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»  Previous neural network training methods required an extensive number Data Preparation Band Structure

of DFT simulations to obtain the ground truth (Hamiltonians). « Limited labeled data leads to inaccurate band structures; our approach

with unlabeled data in neural network training corrects this.

« Data preparation: atomic structure creation (Vienna ab-initio simulation

- Conversely, when working with limited training data, deep learning package), DFT Hamiltonian calculation (OpenMX software), and
models often exhibit increased errors in predicting Hamiltonians and Hamiltonian matrix transformation (Wigner D-matrix). MoS, Bi,Te; HfO, InGaAs
band structures for testing data.  Generated data for M0oS2, Bi2Te3, HfO2, InGaAs. S e e ek = = e
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« This phenomenon carries the potential risk of yielding inaccurate physical Message-passing Neural Network Y o N

Interpretations, including the emergence of unphysical branches within
band structures. « Our framework has been applied to the state-of-the-art model, DeepH-

E3, which utilizes a message passing neural network. =1

« To address this challenge, we introduce a novel deep learning-based SRR es Kb e W Ek Hw
method for calculating DFT Hamiltonians, specifically designed to
generate accurate results with limited training data.

* ;IS vertex i representing an atom, e;; is the edge between vertices i
and j indicating the bond, 4; is atomic number, r;; is the distance, 7;; is Ablation Study

the angle, H;; is the Hamiltonian element, and t is the number of update. - More unlabeled data reduces Hamiltonian error (Figure a).

* Reducing initial step I and increasing training weight a gradually improve
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Semi-supervised Learning « When dealing with a limited amount of training data, there exists a risk of
. We utilize mean-squared error loss for both supervised and obtaining distorted results in the subsequent physical analysis.
unsupervised loss. - To address this challenge, we introduce a framework that mitigates the

Semi-supervised Learning (Pseudo-label method)

limitations arising from insufficient training data.

« Total loss includes the both losses with a hyperparameter a, which

Labeled data Unlabeled data .
controls effects of unlabeled data for training. « We achieve this by incorporating semi-supervised learning techniques
. . . Labeled data DET Into neural network training.
. . . (w/ DFT results) Hamiltonian
2. Predict labels
. . . for the unlabeled data === Neural Network ” I r Broader Im pact
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_ 3 Retrain 1 L (1) i 7% « There are scenarios where access to extensive simulations or
1. Train the model ' 7,7 Predicted . . . . .
: w/ labeled data > _ _ conducting experiments can be limited due to various constraints,
with labeled data Pseudo-labeled data I I == Hamiltonian . . o .
Including resource limitations or high costs.
—
(2) (2) £U * In such situations, it becomes imperative to achieve reliable and
qaeurel e meaningful results using a limited amount of training data.
3. Retrain —_— — — . .
w/ unlabeled data Pseudo Hamiltonian « Our framework offers a versatile solution that can be applied effectively
Unlabeled data L=Ls+ aly (w/unlabeled data) to a wide range of examples in these circumstances.

(w/o DFT results)
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