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Background and Motivations

Associative Memory Hyperdimensional Computing (HDC)
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when dealing with data with complex structure (e.g. strings, graphs)

Success of HDC based machine learning approaches is heavily 4 Existing kernel method literature has wide variety of kernel functions
dependent on the encoding function that maps raw data to (similarity functions)

high-dimensional space

Kernel methods and HDC

e Inner-products in HD space should be reflective of some salient notion of similarity

e o on ambient space.
¢ = e Idea: Construct HD encoding functions using suitable kernel functions.
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polynomial kernel)
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e Just like in HDC, kernel methods work by
embedding data into & high-dimensional space e RFF only works with shift-invariant kernels on a Euclidean space, which

wherein similarities are measured using

inner-products many useful kernels do not satisfy (i.e. kernels on graphs and strings)

Nystrom Method based HDC Encoding & Main Results

e “Top down” approach where embedding directly Experimental setup:
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We pose no restriction on Kernel K, the following holds up to a first order approximation:

G Key Results:

E[{(¢(x:),0(z;))] = i.e. normalized kernel (4)
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Where (G is estimated kernel value between x; and x; produced by Nystrom method and the String Protein sequence 997, R1% 2 . .
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Summary & Acknowledgement

e In summary, we propose a new way to generate embeddings for HDC which can turn any user-defined positive-semidefinite similarity function
iInto an equivalent embedding.
e This work allows future HDC works to exploit the power of kernel methods while still conforming to the general formalism and benefits of HDC.

Discussion & Future Work

e We recognize that the improvements in our proposed HDC encoding methods also come with additional computation costs in the form of kernel
evaluation.

e How to achieve the best efficiency-accuracy trade-offs for HDC applications are non-trivial problems that need further investigations.
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