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Presenter Notes
Presentation Notes
In this work, we introduce a software for building customizable and scalable data center models with sustainability applications for modeling, visualization and control
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Architecture Overview
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Presenter Notes
Presentation Notes
The framework is a part of our work at Hewlett Packard Labs to design digital twins for data centers control using AI. At its core it facilitates extensive customization and scalability. As you can see in the configurator on the left, the user can specify all the necessary aspects of the data center and the software maps it to the system models starting from the servers in the IT Room all the way to the Cooling Tower.
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Architecture Details

* JSON enabled Customization
* |IT Room Geometry and Parameters
* |IT And HVAC System Parameters
* Precomputed CFD measurements

* Python enabled
* Hierarchical Modeling of IT and HVAC systems
* Visualization

e Control Agents

e Open Al gym interface with support for
Multiagent Reinforcement Learning

* Traditional controllers like MPC

* \Vectorized calculations to facilitate high
scalability and faster execution on limited
resources for simulation
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* WEATHER, GRID ENERGY & CARBON INTENSITY DATA

IT & HVAC CONFIGURATIONS
* PRECOMPUTED CFD RESULTS

[DATA CENTER CONFIGURATIONS & INPUTS
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Presenter Notes
Presentation Notes
How does the ML Integration software do that? One of the easiest forms of customization that we provide is specifying system parameters through JSON scripts, Object oriented modeling and visualization of the IT and HVAC systems in Python. With the implementation of the Open AI interface, we allow users to benchmark different control approaches on the data centers. Also, due to the vectorized implementations of the IT Room components, the the software facilitates high scalability and faster execution
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Comparison with Current Data Center Model
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Characteristics | |T Room HVAC Open Al Integrate Temperature Scalability | Execution
Customization | Customization | interface for | CFD Results | Visualization Speed

Current
Implementations RL COI’]tI"O'
CFD
Baced O O O O | @
Energy Plus
and Open O O O @ O O O
Modelica

Our
Work . . .

@ Includes these features

O Limited work
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@ Lacks these features


Presenter Notes
Presentation Notes
We observed in literature that easy and extensive IT system and HVAC customization are not available in current Energy+ implementations

Interface for RL control: There has been some work on integrating the Open AI in Energy+ implementations for data centers. Our framework as a matter of fact also allows multiagent benchmarking.
Like some of the current applications it also allows the user to integrate precomputed CFD results into the modeling framework.

On the side of results, our approach can provide extensive visualization for estimating temperature distribution, which is essential for hotspot identification. It is also massively scalable with better execution speed compared to the existing implementations

We next show some of the concrete applications of the software
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Customizability

* Parameter values assigned via
dictionary = Any parameter can be
updated

* CFD Datasets: Any arrangement of
data center provided the “supply”
and “approach” temperatures are
precomputed

Parameter Description Example
Value

NUM_ROWS # of rows in the data center | 5

NUM_RACKS PER ROW # of racks per row 10

CPUS_PER RACK # of CPUs per rack 40

RACK_SUPPLY Supply temperatures for | [22, 225, ..]

APPROACH TEMP LIST each rack

C_AIR Air properties 1006

CHILLER COP Chiller’s coefficient of per- | 6.0
formance

IT FAN_AIRFLOW LB Fan airflow ratios for IT | [0.0 0.6]

RATIO LB equipment

IT FAN AIRFLOW UB Fan airflow ratios for IT | [0.7 1.3]

RATIO _UB equipment
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Example JSON script for configuring data center
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Visualization
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Control
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Footprint
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CARBON AWARE FEEDBACK

7.63 % savings in energy consumed

7.23% savings in carbon footprint
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Presenter Notes
Presentation Notes
The overarching goal is to reduce the energy cost and carbon footprint of the data center operations through reinforcement learning based control

Here we show some reinforcement learning agent applications for a single room data center. For a  1.2Mwh data center, we observed savings to the tune of 7% for energy and carbon footprint
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Speed and Scalability
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Comparison of method timings between implementations in EnergyPlus and
PyDCM. Mean = std. dev. of 10 simulations

Method EnergyPlus PyDCM Reduction (%)
init 1.05s £ 23.6ms 1.57ms 4 60.4ps 99.85
reset 2.67s £+ 23.8ms 0.03ms 4= 0.25ps 99.99
step 0.46ms + 98.38us  0.13ms £ 15.84ps 71.33

Total simulation time comparison between implementations in EnergyPlus and
PyDCM for different RL episode lengths. Mean * std. dev. of 10 simulations

Episode EnergyPlus PyDCM Reduction (%)
30days 3.33s £91.20ms  0.34s £+ 42.20ms 89.79
7days  2.64s £34.39ms  0.09s & 1.86ms 96.77

Comparison of Performance Metrics between implementations in EnergyPlus and
PyDCM for RL Environments. Mean = std. dev. of 10 simulations

Metric EnergyPlus PyDCM Reduction (%)
Wait. Time  1.48s 4+ 0.22s  0.27s & 0.48ms 81.55
Sample Time  9.28s £+ 0.51s  3.95s £ 16.20ms 57.34
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Presenter Notes
Presentation Notes
These speedups occur when current implementations in EnergyPlus does no customized calculations while we assume that each CPU characteristic is different
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Conclusions

* Developed a data center modeling and control-enabling
framework

 Demonstrated it resource effectiveness and speed compared
to current implementations

Future Work

« Add Cooling technologies like liquid cooling

 Load-shifting workloads and battery optimization presents a
further refinement with multiagent RL
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Thank youl!
Questions?
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