
We have performed our analysis on the lower (25th) and upper (75th) 
quantile and have categorized our predictand variables in two separate 
classes to identify causal relationships for the tail ends of the 
distribution. In this way, we avoided any overlap between the two 
classes due to instrument-related uncertainty in the dataset. 

Current weather and climate models do not accurately represent low-
level cloudiness and the associated precipitation. Detailed observations 
made at the Atmospheric Radiation Measurement (ARM) observatories 
provide an opportunity to identify causal relationships between large-
scale environments, clouds, aerosol, and drizzle properties, which 
would help us constrain warm rain initiation in the microphysics 
schemes.

Bayesian networks or causal probabilistic networks, are graphical 
models used to represent and analyze probabilistic relationships 
between variables. A Bayesian network consists of nodes (for each 
variable) and directed edges (connecting the nodes), which represent 
the probabilistic dependencies between variables. Structural learning is 
the process of inferring the causal structure of a Bayesian network from 
the data. We applied structural learning with Bayesian networks by 
implementing directed acyclic graphs using neural networks. 

ARM East North Atlantic (ENA; 
28oW, 39.5oN, 25 m ASL) site has 
been operational since 2013 and 
has multiple instruments to make 
detailed observations of surface, 
dynamic, thermodynamic, 
radiative, aerosol, and cloud fields. 
We used the ARM dataset from 
2015 – 2021 for all weather 
regimes to obtain a robust causal 
relationship.

We applied Directed Acyclic 
Graphs (DAG) with Non-
combinatorial Optimization via 
Trace Exponential and 
Augmented lagRangian for 
Structure learning (NOTEARS; 
Zheng et al., 2018) using MLP 
neural networks using PyTorch
library. In this method, 
continuous optimization is 
performed by applying global 
updates in each iteration, thus 
avoiding assumptions related to 
the local structure of the graph. 
We also compared our causal 
ML results with Random Forest 
(RF) algorithm, which is a 
traditional ML algorithm. 
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§ Rain rate shows a high conditional 
treatment effect by Cloud liquid water path, 
followed by environmental (LTS, Tadv), 
aerosol number concentration, and cloud 
top net radiative cooling.

§ Drop diameter has the most number of 
direct edges with a dominant effect from 
cloud liquid water path, followed by rain 
rate and LTS. 

§ Cloud optical depth also depicts high CATE 
and weights from cloud liquid water path, 
rain rate, precipitable water vapor and 
aerosol number concentration. 
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Objective: Apply Deep Learning to create Bayesian Networks to learn 
the relationship between environment, cloud, and aerosol properties 
with drizzle characteristics. Courtesy: Tozer et al., 2019)

Figure 2 depicts the causal 
DAG for LWPc, where the 
edges are colored 
according to their 
normalized edge weights. 
Conditional Average 
Treatment Effect (CATE) 
scores further provide an 
idea of how strong the 
“effect” is between the two 
nodes. 
Note that LWPc is strongly 
influenced by environment 
(LTS, Tadv, PWV), followed 
by aerosol (SC, #C) and 
cloud (NET) properties. 

Figure 2: Causal DAG with 
normalized edge weights (colors) 

and CATE scores for LWPc

§ DAG-NOTEARS Framework was 
successfully implemented to ARM 
observations to identify causal 
relationships between environment, cloud, 
aerosol, and precipitation properties. 

§ Cloud liquid water path (LWPc) is primarily 
impacted by environmental (temperature 
advection, LTS, PWV), cloud (NET), and 
aerosol (number conc, scattering) 
properties, thus suggesting a concurrent 
role of local and large-scale environment. 

§ Rain rate prediction has the highest 
accuracy trailed by cloud optical depth, 
cloud liquid water path and diameter. 

• Note that DAG-NOTEARS 
weighs the input variables 
differently than RF. 

• Improved accuracy is 
achieved in DAG-NOTEARS 
as seen in the confusion 
matrix for LWPc

Figure 1: ARM-ENA Site

Figure 3: DAG-NOTEARS and RF Feature Importance for 
LWPc, DRR, DDiam, COD. Figure 4: Confusion Matrix for LWPc.
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