
§ The emulator is ~100 times faster than 
traditional RRTMG on GPUs.

§ This speed-up would allow us to couple the 
emulator with a traditional dynamical core 
of WRF/SCREAM. 

§ In our next steps, we aim to couple the 
PIDA-CNN emulator with the WRF/E3SM 
dynamical core to run radiative transfer 
parameterization at every model time step.

§ With this exercise, we hope to improve the 
accuracy of weather and climate 
predictions. 
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§ In this study, we develop an atmospheric 
radiative transfer emulator for all sky 
conditions (cloudy) using a CNN 
architecture where we physically constrain 
the SW and LW vertical heating rates and 
fluxes using solar position and cloud 
radiative forcing. 

§ We also enforce the vertical dependence of 
atmospheric layers using a “Domain-
Aware” approach. 

§ Our PIDA-CNN emulator obtains low 
RMSE/MAE and high correlation in 
predicting both SW and LW fluxes, heating 
rates, and CRF. 

Inputs
§ Surface: Albedo, solar zenith 

angle, elevation, air 
temperature, atmospheric 
pressure

§ Vertical: Ozone, water vapor, 
ice, cloud water, rain 
concentration, cloud fraction

Outputs
§ LW: Outgoing longwave 

radiation (OLR), Up and Down 
fluxes at TOA and surface, 
heating rates

§ SW: Up and Down fluxes at 
TOA and surface, heating 
rates

§ The data used in this study is 
from 28 years of output from 
the regional climate model 
using Weather Research and 
Forecasting (WRF) version 
3.3.1, driven by the National 
Centers for Environmental 
Prediction (NCEP-R2) from 
1982 to 2009.

§ The model covers the entire 
troposphere with 38 vertical 
levels from surface to ~16 km 
(110 hPa). 

§ This version uses Rapid 
Radiation Transfer Model for 
GCMs (RRTMG; Pincus et al., 
2003). 

§ Figure 2 depicts our PIDA-CNN architecture where we have 38 
hidden layer blocks containing a 1D Convolutional layer (32 filters) 
followed by a Max Pooling and dropout layer, which connects to a 
dense layer of 64 neurons (similar to Wang et al., 2019). 

§ The output of this block is passed as an additional input to the next 
neural network block and it repeats 37 times.

§ The outputs of these blocks are then concatenated into one layer 
which then connects to a dense layer of 128 neurons. 

§ The final output is SW/LW heating rates at 38 vertical levels and 
upward and downward fluxes at the top of the atmosphere and 
surface. 

§ The following equations describe the custom loss functions for SW 
and LW outputs where ℒ! 𝑦, $𝑦 is the traditional Huber loss function 
with additional penalties for SZA, CRF, and an L1 regularization term.

§ We compare our results with a baseline CNN (DA-CNN) without a 
custom loss function.

PIDA-CNN outperforms the traditional DA-CNN for heating rates and 
TOA/surface fluxes.

SW flux prediction is better than LW flux prediction. 
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§ Radiative transfer modeling is a complex and computationally 
expensive process that is used to predict how radiation interacts with 
the atmosphere and Earth’s surface. 

§ Shortwave (SW) radiation is mostly incoming solar radiation (ƛ ≤ 4µ) 
while longwave (LW) spectrum is primarily terrestrial infrared 
radiation (ƛ ≥ 4µ). Both these spectrums work in tandem with each 
other to create the energy balance in the Earth’s atmosphere. 

§ These radiation interactions are represented by widely-developed 
radiative transfer models (RTMs) as a process-scale model in the 
numerical weather prediction and climate models (Mlawer et al., 
1997). 
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These RTMs are computationally 
expensive to run at every model time step 
and thus machine learning-based 
radiation emulators can help reduce the 
computational cost and improve the 
accuracy of weather and climate models. 

Figure 1: Radiative Transfer in the Atmosphere
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Figure 2: Deep Learning Framework Schematic
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TOA/SURFACE FLUXES

CLOUD RADIATIVE FORCING

Figure 6 shows RMSE and MAE for SW/LW 
CRF on the training location and the 
surrounding grid. 
Overall, PIDA-CNN performs well in predicting 
both SW and LW CRF. 
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Figure 6: RMSE and MAE for LW/SW CRF
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Figure 3: RMSE and MAE for LW/SW Heating Rates

SZA: Solar Zenith Angle
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