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Climate relevance

Where to locate new housing to minimize 
travel-related CO2 emissions?
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Travel behavior differs between urban & suburban residents

3Trip distance Mode choice

Introduction
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Motivating question

Why do emissions differ between 
urban & suburban areas?
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Two possible explanations
1. Different kind of people (residential self-selection)
2. Differences in the built environment

Motivating question

Why do emissions differ between 
urban & suburban areas?
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Research question

What is the effect of built environment on 
travel behavior and related CO2 emissions

when accounting for residential self-selection?
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Existing work

● Non-linear effect estimation wo/ confounding factors (ML methods)
● Linear (causal) effect estimation w/ confounding factors (propensity score matching & sample selection)

Our contribution

● Combining both approaches using double machine learning
○ Model nonlinearity
○ Control for confounding effects
○ Capture moderating influence and effect heterogeneity

Introduction

Contribution

7



Methods
I. Data & preprocessing    II. Feature engineering    III. Causal inference
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● Travel diaries from survey (32k participants)

● Calculate per household emissions based on 
travel distance, mode, and emission factors 

● Average travel-related emissions per 
residential zip code

Scenario modelingCausal inferenceFeature engineering Data & preprocessing

Methods

Overview
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● Select confounders (encode travel preferences)

● Define treatment as the difference to the average built environment

● DML due to multiple, continuous treatment dimensions

● XGBoost for nuisance models, CausalForest for final model  
(EconML implementation)

● Examine moderating effects

Figure 1. Directed acyclic graph (DAG)
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Scenario modelingCausal inferenceFeature engineering Data & preprocessing

Methods

Overview
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● Apply model to evaluate locations of planned residential projects

● Compare different urban planning strategies such as TOD



Results
I. Causal effect estimation    II. Moderating effects    III. Scenario modeling
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➔ Travel-related CO2 emissions differ by a factor of two between urban and 
suburban neighborhoods in Berlin because of the built environment

➔ Destination accessibility has the strongest impact on emissions

Table 2. Decomposition of built environment effect.

Effect of the built environment
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Results

Figure 2. Spatially-explicit effect of the built 
environment on travel-related CO2 emissions
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➔ Household size, income, age, and car ownership are associated with a higher 
effect of the built environment

➔ Positive environmental attitudes with a lower effect of the built environment

Figure 3. Moderating influence on the built environment effect of distance to center.

Results

Moderating effects
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➔ Induced transport CO2 emissions of planned residential projects 70% above 
the theoretical optimum of urban densification

Results
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Case study of planned residential projects

Figure 4A. Induced transport CO2 emissions of residential 
planning strategies. 

Figure 4B. Induced transport CO2 emissions of 
planned residential projects.



Discussion & conclusion
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● Large effect of the built environment on travel behavior
○ Emissions differ by a factor of two between the city center and the outskirts 
○ Declining accessibility of destinations (74%) and population density (15%) drive emissions

● Moderating effects
○ Largest effect for old, high-income, and car-owning households

● Limitations masking the true effect of the built environment
○ Incomplete characterization of the built environment and travel preferences
○ Oversimplified conceptual representation (e.g. ignoring mediating effect of the built 

environment on travel preferences)
○ Partial violation of causal inference assumptions (e.g. spatial spillover effects)

Advancing evidence-based low-carbon residential planning
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Discussion & conclusion



19

Climate mitigation conclusion

Compact development is key 
to decarbonize urban transport



The built environment and induced transport CO2 emissions
A double machine learning approach to account for residential self-selection

Thanks for listening!
Florian Nachtigall, Felix Wagner, Peter Berrill, Felix Creutzig

https://floriannachtigall.github.io/
nachtigall@tu-berlin.de
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● Pictures from unsplash.com
● Icons from flaticon.com
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Poster
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Study area
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Travel behavior
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Feature engineering: Built environment & travel preferences
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Methods
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Emission factors to convert travel distance to CO2 emissions
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Appendix
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Explanatory power of covariates with XGBoost regressor

● 5-fold random cross-validation with 1000 tree estimators, a tree depth of 6, and a learning rate of 0.01
● Coefficient of determination, R2, between 0.8 and 0.85 depending built environment characterization 

and inclusion of transport means ownership attributes

Appendix
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Appendix

○ Randomized control trial (RCT) is not suitable
○ Confounding effects (treatment assignment is not randomized, leading to biased estimates)
○ High-dimensional covariates (functional form unknown or non-parametric)
○ Multiple, continuous treatment dimensions

Causal inference: Double machine learning

HOW

GOAL

WHY

MODEL ○ XGBoost for nuisance models, CausalForest for final model  (EconML CausalForestDML implementation)

○ Stage 1: Debiasing / estimation of nuisance parameters
■ Predicting the outcome from the controls -> outcome residuals
■ Predicting the treatment from the controls -> treatment residuals

○ Stage 2: Estimation of heterogeneous treatment effect
■ Predicting the outcome residuals from the treatment residuals and controls

○ Estimate causal effects from observational data
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