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Introduction

Travel behavior differs between urban & suburban residents
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Research question

What is the effect of built environment on

travel behavior and related CO
when accounting for residential self-selection?




Introduction

Contribution

Existing work

e Non-linear effect estimation wo/ confounding factors (ML methods)
e Linear (causal) effect estimation w/ confounding factors (propensity score matching & sample selection)

Our contribution

e Combining both approaches using double machine learning
o Model nonlinearity
o  Control for confounding effects
o Capture moderating influence and effect heterogeneity

CCAIl workshop @ NeurlPS ‘23 Nachtigall et al.
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Methods
Overview

Data & preprocessing

Ayl
(]

e Travel diaries from survey (32k participants)

e Calculate per household emissions based on
travel distance, mode, and emission factors

e Average travel-related emissions per
residential zip code

CCAIl workshop @ NeurlPS ‘23

Ori_Plz
10115
10115
10179
10179
10179

12619
12169
12619
12623
15366
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Des_PIz
10115
10115
10179
10179
10179

12169
12619
16344
15366
12623

Mode Trip_Purpose
Transit Home-Work
Transit Work-Home

Foot Home-Leisure
Foot Leisure-Home
Foot Leisure-Home
Car Home-Work
Car Work-Home
Transit Home-Work
Car Home-Shopping
Car Shopping-Home

Trip_Duration Trip_Distance emissions

20
30
30
10
30
60
60
70
10
10

729.0
729.0
7000.0
254.0
7000.0

28110.0
26952.0
22268.0

2581.0
2581.0

47.385
47.385
0.000
0.000
0.000

4553.820
4366.224
1447.420
418122
418122



Methods
Overview

Feature engineerin

5D’s of compact development

Feature name

Description

Destination accessibility

Distance to center
Distance to subcenter

POI density index

Distance to neighborhood with highest POI density

Least distance to any of the 10 neighborhoods with high-
est POI density

Local POI density for offices, schools, kindergarten, and
universities

Walkability index

Density Population density Population density of the built-up area
Diversity Land use Share of mix-use areas
Design Car-friendliness index Provision of expressway kilometers per capita

Intersection density in the built-up area

Distance to transit

Transit accessibility index

Gravity model-based index describing the average spatio-
temporal transit accessibility of a neighborhood

Table 2: Built environment characteristics. Overview of all built environment characteristics considered in

CCAIl workshop @ NeurlPS ‘23

Nachtigall et al.

Distance [m] to nearest subcenter

POI density index

10



Methods

Causal inference
Built environment
e Select confounders (encode travel preferences) Destinaton accessiy, denity,
iversity, design, aistance (o transii
e Define treatment as the difference to the average built environment
e DML due to multiple, continuous treatment dimensions A)
e XGBoost for nuisance models, CausalForest for final model
(EconML implementation) !
( Travel behavior
° Examlne mOderatlng eﬁects Travel-related CO, emissions

(B)

C

Travel preferences

Socio-demographics &
travel-related attitudes

)

(©)

Figure 1. Directed acyclic graph (DAG)
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Methods
Overview

Scenario modelin

Werneu

Barnim

Altlands!

e Apply model to evaluate locations of planned residential projects

e Compare different urban planning strategies such as TOD

Potsdam

\ Erkrer

CCAIl workshop @ NeurlPS ‘23 Nachtigall et al.
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Results

|. Causal effect estimation Il. Moderating effects Ill. Scenario modeling



Results

Effect of the built environment

-> Travel-related CO, emissions differ by a factor of two between urban and
suburban neighborhoods in Berlin because of the built environment
=> Destination accessibility has the strongest impact on emissions

S¥
60 8 ;
o 5D’s of compact development | Feature name Effect share
40 g % Distance to center 51.2%
g > Destination accessibility Distance to subcenter 15.2%
o =
20 5 9 POI density index 11.1%
0 'g § Density Population density 11.4%
§ 5 Diversity Land use 0.3%
-20 g E . Car-friendliness index -
E o Design g
-4 %Y ‘Walkability index 6.4%
%\ S Distance to transit Transit accessibility index | 4.3%
-60 £ @
OE
é LY Table 2. Decomposition of built environment effect.

Figure 2. Spatially-explicit effect of the built
environment on travel-related CO, emissions



Results
Moderating effects

=> Household size, income, age, and car ownership are associated with a higher
effect of the built environment
-> Positive environmental attitudes with a lower effect of the built environment
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Results

Case study of planned residential projects

=> Induced transport CO2 emissions of planned residential projects 70% above
the theoretical optimum of urban densification
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Figure 4B. Induced transport CO, emissions of Figure 4A. Induced transport CO, emissions of residential
planned residential projects. planning strategies. 16
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Discussion & conclusion

Advancing evidence-based low-carbon residential planning

e Large effect of the built environment on travel behavior
o Emissions differ by a factor of two between the city center and the outskirts
o Declining accessibility of destinations (74%) and population density (15%) drive emissions

e Moderating effects
o Largest effect for old, high-income, and car-owning households

e Limitations masking the true effect of the built environment
o Incomplete characterization of the built environment and travel preferences
o Oversimplified conceptual representation (e.g. ignoring mediating effect of the built

environment on travel preferences)
o Partial violation of causal inference assumptions (e.g. spatial spillover effects)

CCAIl workshop @ NeurlPS ‘23 Nachtigall et al.
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Climate mitigation conclusion

Compact development is key
to decarbonize urban transport
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The built environment & induced transport emissions
A double machine learning approach to account for residential self-selection

Florian Nachtigall, Felix Wagner, Peter Berrill, Felix Creutzig

Introduction

Understanding why travel behavior differs between residents of urban
centers and suburbs is key to sustainable urban planning. Especially in light
of rapid urban growth, identifying housing locations that minimize travel
demand and induced CO, emissions is crucial to mitigate climate change.
While the built environment plays an important role, the precise impact on
travel behavior is obfuscated by residential self-selection.

Research question

What is the effect of built environment on travel behavior and related CO,
emissions when accounting for residential self-selection?

Methods

Use double machine learning (DML) to control for residential self-selection
and obtain spatially explicit estimates of the effect of the built environment
on travel-related CO, for each neil from

data.
)

G

N

Travel behavior
Traverelted CO, amasons

Figure 1. Directed acyclc graph (DAG) with direct (green) and confounding effect (pink)

Data & preprocessing
o Travel diaries from 2017 SrV mobility survey (32k participants in Berlin)
o Calculate emissions based on travel distance, mode, and emission factors

* Average t |-related i per zip code
Eeature engineering
* Describe built along “5Ds™ inati ibility, density,

diversity, design, and distance to transit

Estimate treatment effect of built environment from observation data

e C . Account for resit it If-selection using il ion on
socio-demographics and ownership of transport means

Treatment level: Difference to average built environment

Model selection: DML due to multiple, continuous treatment dimensions
XGBoost for nuisance models, CausalForest for final model (EconML
implementation)

Results

>

v

v

effect: Travel

lated CO.

differ by a factor of two

%
between urban and suburban neighborhoods in Berlin because of the
built environment (see figure 2)

Effect Declining ibility of

population density (15%) drive emissions (see table 1)
Moderating effects: Bum environment effect is largest for old,

high-i . and

(see figure 3)

20
o
-20
-0
-60

3

&
Percentage difference in travel-related CO;

emissions compared to city average [%]

Figure 2. Spatially-explicit effect of the built environment on travel-related CO, emissions.

(74%) and

SD’s of compact development | Feature name Effect share

Distance to center 512%
Destination accessibility Distance to subeenter 152%

POI density index 111%
Density Population density 114%
Diversity Land use 03%
Design Car-friendliness index -

Walkabilty index 64%
Distance to transit “Transit accessibility index | 4.3%

Table 1. Decomposition of the buit environment's effect.
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Figure 3. Moderating

(example

center).

“NEURAL INFORMATION
 PROCESSING SYSTEMS

Case study

Assessment of planned housing projects in Berlin in terms of induced transport CO,
emissions

= 19 of 22 location will increase emissions, on average 17% above city's current
average and 70% above ideal urban densification according to model (see figure 4)
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Figure 4. Induced transport CO, emissions of planned residental projects (iet) and urban planning srategies (igh).

Discussion

DML can advance evidence-based low-carbon urban plannin
o Spatial explicit estimates of travel-related CO,
facilitate residential planning

Compact iskeyto urban transport
o Increase destination accessibility and population density to reduce emissions
o Impact likely larger in stressed housing market as many people are not able

to realize their urban preferences and use sustainable modes of transport

imitation: K tr of t ilt envit Nt
% O : .

(e.g. ignoring mediating effect of built environment on travel preferences)
e Partial violation of causal inference assumptions

(e.g. ignoring spatial spillover effects)

Conclusion

> owle machine learning (DML based on mobiltysurveys enables
transport

See link / QR code for references, presentation recording and slides.

= " Contact

: nachtigall@tu-berlin.de
McC s Email
Mercator Research instiute on Website: floriannachtigall.github.jo
GioalCommons nd Crat

Nachtigall et al.

23



Appendix

Main center
Subcenters

Study area % R

Rail system
"Ringbahn" train
30000

25000

20000

15000

10000

5000

10 km

Figure 4: Built environment of Berlin, Germany. The center and subcenters, based on points of interest
density, are indicated as dark red circles. Population density of neighborhoods is color coded in blue. Natural
areas according to Berlin land use data [20] are marked in green. The public transportation rail network is drawn
in gray, with the exception of the so-called "Ringbahn", a commuter rail line that circles central Berlin, which is
highlighted in orange. We consider neighborhoods that are located outside of the "Ringbahn" and not within
walking distance to be suburban.
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Appendix
Travel behavior

CCAIl workshop @ NeurlPS ‘23

Distance mode share (%]

g 8 &

N
o

nN
-3

G

100
— 80
£
¥
Mok g
- Foot E % Made
Bike z pii
= Transit @ Bike
. Car 2w - Transit
g m— Car
20
°
50 75 100 125 150 175 o o i

& o
Trip distance [km] ,ﬁd" o@.&"\ \’9“ & M o

o«

C D

Figure 3: Overview of trip mode, purpose, distance, and related CO; emissions. (A) Predominant mode of
transport for each neighborhood based on trip counts. (B) Average travel-related CO; emissions per household
for each neighborhood. (C) Trip distance specific mode share. (D) Trip purpose specific mode share, ordered by
increasing car share.
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Methods
Feature engineering: Built environment & travel preferences

5D’s of compact development | Feature name Description
Distance to center Distance to neighborhood with highest POI density
Destination accessibility Distance to subcenter Least distance to any of the 10 neighborhoods with high-
est POI density
POI density index Local POI density for offices, schools, kindergarten, and
universities
Density Population density Population density of the built-up area
Diversity Land use Share of mix-use areas
Desien Car-friendliness index Provision of expressway kilometers per capita
g ‘Walkability index Intersection density in the built-up area
Distance to transit Transit accessibility index | Gravity model-based index describing the average spatio-
temporal transit accessibility of a neighborhood

Table 2: Built environment characteristics. Overview of all built environment characteristics considered in

Category Variable name Description
Income Average household income
: ¢ Household size Average number of persons living in a household
Socio-demographics R
Age Average age of adult (>18 years) residents
Higher education Share of people older than 25 with university degree
Car ownership Average number of private & company cars per household
Bike ownership Average number of bicycles owned per person
Driving license Average share of adults (>18 years) with driving license

Proxies for travel-related attitudes | Transit subscription | Average share of people with monthly transit subscription (incl.
children and people with disabilities with free ride tickets)

Political preferences | Electoral share of the Green party in constituencies intersecting the
neighborhood in the last regional elections

CCAI workshop @ NeurlPS ‘23 Table 1: Travel preferences. Overview of all socio-demographic traits and proxies for travel-related attitudes

R TS TP A



Appendix

Emission factors to convert travel distance to CO2 emissions

CCAIl workshop @ NeurlPS ‘23

Mode Emissions [g CO,/pkm]
Car (ICE) 162
Moped (ICE) 70
Transit 65
Bike 20
Foot 0

Table 2: Emission factors of transport modes. Central estimates of life-cycle greenhouse gas emissions of
urban transport modes per person km according to the International Transport Forum (ITF) [21]. Emissions
factors are expressed CO, equivalents and have partially been aggregated to match transport modes considered
in this study (e.g. bus & metro — transit). Life-cycle emissions include a vehicle, fuel, and infrastructure
component as well as operational services. ICE refers to internal combustion engine.

Nachtigall et al.
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Appendix
Explanatory power of covariates with XGBoost regressor

e 5-fold random cross-validation with 1000 tree estimators, a tree depth of 6, and a learning rate of 0.01
e Coefficient of determination, R?, between 0.8 and 0.85 depending built environment characterization
and inclusion of transport means ownership attributes
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Appendix
Causal inference: Double machine learning

GOAL o  Estimate causal effects from observational data
o  Randomized control trial (RCT) is not suitable
o  Confounding effects (treatment assignment is not randomized, leading to biased estimates)
HY o  High-dimensional covariates (functional form unknown or non-parametric)
o Multiple, continuous treatment dimensions

o  Stage 1: Debiasing / estimation of nuisance parameters
m  Predicting the outcome from the controls -> outcome residuals
HOW m  Predicting the treatment from the controls -> treatment residuals

o  Stage 2: Estimation of heterogeneous treatment effect
m  Predicting the outcome residuals from the treatment residuals and controls

MODEL o XGBoost for nuisance models, CausalForest for final model (EconML CausalForestDML implementation)

CCAIl workshop @ NeurlPS ‘23 Nachtigall et al. 29



