

Procedural Fairness Through Decoupling Objectionable Data Generating Components

Zeyu Tang zeyutang@cmu.edu

Jialu Wang faldict@ucsc.edu

Yang Liu yangliu@ucsc.edu

Peter Spirtes
ps7z@andrew.cmu.edu

Kun Zhang
kunz1@cmu.edu

Our Contribution in a Nutshell

- 1. We reveal and address the often-overlooked issue of disguised procedural unfairness
- 2. To decouple objectionable data generating components, we propose *value instantiation rule*
- 3. We configure *reference points* to further satisfy requirements of procedural fairness

A Motivating Example - Model Setup

Causal graph

Functional causal model

$$A \sim \text{Bernoulli}(p_A),$$

$$C = \epsilon_C,$$

$$M = \theta_A^M A + \theta_C^M C + \theta^M + \epsilon_M,$$

$$L = \theta_A^L A + \theta_C^L C + \theta_M^L M + \theta^L + \epsilon_L,$$

$$Y = \theta_A^Y A + \theta_C^Y C + \theta_M^Y M + \theta_L^Y L + \theta^Y + \epsilon_Y.$$

A Motivating Example - Illustration of Issue

- Previous proposals
 - causal fairness notions focus on causal effect(s) between A and Y
 - unintentional side-effect on neutral components

Our Framework - Value Instantiation Rule (1)

• Instead of constraints over model parameters, we find appropriate input value for local causal modules

Our Framework - Value Instantiation Rule (2)

Algorithm 1: The Value Instantiation Rule for Local Causal Modules

Input : The $d_{\text{in}}(V;\mathcal{G})$ -ary function $h_V\left(\operatorname{Parents}(V);\hat{\theta}_V\right)$ modeling the causal mechanism between the node V and its direct parents, where $d_{\text{in}}(V;\mathcal{G})$ is the the number of direct parents (in-degree) of V in the graph \mathcal{G} . The configuration function ReferencePoint(·), which maps a directed edge corresponding to an objectionable component $\rho \in \mathcal{E}_{\text{Obj}}$ to a reference point (Definition 4.1) with the domain of value of the tail node of the edge.

Output: The derivation of the predicted outcome \widehat{V} in the local causal module.

 w_i gets the value of variable W_i for the record in the data set;

11 $\widehat{v} \leftarrow h_V(w_1, w_2, \dots, w_{d_{\mathrm{in}}(V;\mathcal{G})}; \widehat{\theta}_V).$

Value instantiation option: Reference point configuration

Value instantiation option: Downstream of reference point(s)

Value instantiation option: Original value in data set

Our Framework - Value Instantiation Rule (3)

Algorithm 1: The Value Instantiation Rule for Local Causal Modules

Input : The $d_{\text{in}}(V; \mathcal{G})$ -ary function $h_V \left(\text{Parents}(V); \hat{\theta}_V \right)$ modeling the causal mechanism between the node V and its direct parents, where $d_{\text{in}}(V; \mathcal{G})$ is the the number of direct parents (in-degree) of V in the graph \mathcal{G} . The configuration function ReferencePoint(·), which maps a directed edge corresponding to an objectionable component $\rho \in \mathcal{E}_{\text{Obj}}$ to a reference point (Definition 4.1) with the domain of value of the tail node of the edge.

Output: The derivation of the predicted outcome \widehat{V} in the local causal module.

```
If there is additional assumption on the functional form h_V(\cdot) and/or parameters \theta_V Then

 | \hat{\theta}_V \leftarrow \widetilde{\theta}_V, h_V \leftarrow \widetilde{h}_V; | / \text{direct correction of the causal mechanism} 

Else

For Each parent node W_j in \text{Parents}(V) = (W_1, W_2, W_{d_{\text{in}}(V,\mathcal{G})}) Do

If the edge \rho_j = (W_j, V) \in \mathcal{E}_{\text{Obj}}, i.e., W_j \rightarrow V is an objectionable component Then w_j gets the value Reference Point (\rho_j), because W_j = \text{Tail}(\rho_j);

Else If there is at least one ancestor nodes of W_j was set to a reference point Then w_j gets the value that W_j would have taken as a downstream of its ancestor nodes, to which reference points, if any, have been assigned;
```

 w_i gets the value of variable W_i for the record in the data set;

11 $\widehat{v} \leftarrow h_V(w_1, w_2, \dots, w_{d_{\mathrm{in}}(V;\mathcal{G})}; \widehat{\theta}_V).$

Value instantiation option: Reference point configuration

Value instantiation option: Downstream of reference point(s)

Value instantiation option: Original value in data set

Our Framework - Value Instantiation Rule (4)

Algorithm 1: The Value Instantiation Rule for Local Causal Modules

Input : The $d_{\text{in}}(V; \mathcal{G})$ -ary function $h_V \left(\text{Parents}(V); \hat{\theta}_V \right)$ modeling the causal mechanism between the node V and its direct parents, where $d_{\text{in}}(V; \mathcal{G})$ is the the number of direct parents (in-degree) of V in the graph \mathcal{G} . The configuration function ReferencePoint(·), which maps a directed edge corresponding to an objectionable component $\rho \in \mathcal{E}_{\text{Obj}}$ to a reference point (Definition 4.1) with the domain of value of the tail node of the edge.

Output: The derivation of the predicted outcome \widehat{V} in the local causal module.

```
If there is additional assumption on the functional form h_V(\cdot) and/or parameters \theta_V Then

 | \hat{\theta}_V \leftarrow \tilde{\theta}_V, h_V \leftarrow \tilde{h}_V; | / \text{direct correction of the causal mechanism} 

Else

For Each parent node W_j in \text{Parents}(V) = (W_1, W_2, \dots, W_{d_{\text{in}}(V;\mathcal{G})}) Do

If the edge \rho_j = (W_j, V) \in \mathcal{E}_{\text{Obj}}, i.e., W_j \rightarrow V is an objectionable component Then

 | w_j \text{ gets the value ReferencePoint}(\rho_j), \text{ because } W_j = \text{Tail}(\rho_j); 

Else If there is at least one ancestor nodes of W_j was set to a reference point Then

 | w_j \text{ gets the value that } W_j \text{ would have taken as a downstream of its ancestor nodes, to which reference points, if any, have been assigned;}
```

Else

 w_j gets the value of variable W_j for the record in the data set;

```
11 \widehat{v} \leftarrow h_V(w_1, w_2, \dots, w_{d_{\text{in}}(V;\mathcal{G})}; \widehat{\theta}_V).
```

Value instantiation option: Reference point configuration

Value instantiation option:

Downstream of reference point(s)

Value instantiation option Original value in data set

Our Framework - Value Instantiation Rule (5)

Algorithm 1: The Value Instantiation Rule for Local Causal Modules

Input :The $d_{\text{in}}(V; \mathcal{G})$ -ary function $h_V \left(\text{Parents}(V); \hat{\theta}_V \right)$ modeling the causal mechanism between the node V and its direct parents, where $d_{\text{in}}(V; \mathcal{G})$ is the the number of direct parents (in-degree) of V in the graph \mathcal{G} . The configuration function ReferencePoint(\cdot), which maps a directed edge corresponding to an objectionable component $\rho \in \mathcal{E}_{\text{Obj}}$ to a reference point (Definition 4.1) with the domain of value of the tail node of the edge.

Output: The derivation of the predicted outcome \widehat{V} in the local causal module.

```
1 If there is additional assumption on the functional form h_V(\cdot) and/or parameters \theta_V Then 2 \mid \hat{\theta}_V \leftarrow \widetilde{\theta}_V, h_V \leftarrow \widetilde{h}_V; // direct correction of the causal mechanism 3 Else
```

For Each parent node W_j in $\operatorname{Parents}(V) = (W_1, W_2, \dots, W_{d_{\operatorname{in}}(V;\mathcal{G})})$ Do

| If the edge $\rho_j = (W_j, V) \in \mathcal{E}_{\operatorname{Obj}}$, i.e., $W_j \to V$ is an objectionable component Then
| w_j gets the value Reference Point (ρ_j) , because $W_j = \operatorname{Tail}(\rho_j)$;

Else If there is at least one ancestor nodes of W_j was set to a reference point Then w_j gets the value that W_j would have taken as a downstream of its ancestor nodes, to which reference points, if any, have been assigned;

Else

 w_j gets the value of variable W_j for the record in the data set;

```
11 \widehat{v} \leftarrow h_V(w_1, w_2, \dots, w_{d_{\text{in}}(V;\mathcal{G})}; \theta_V).
```

Value instantiation option: Reference point configuration

Value instantiation option: Downstream of reference point(s)

Value instantiation option: Original value in data set

Our Framework - Overall Pipeline

 The overall pipeline utilizes reference point configurations that are to the greatest benefit of the least advantaged individuals

```
Algorithm 2: Aggregating Local Causal Modules while Decoupling Objectionable Components

Input : The data set \mathcal{D}, the hypothesis class \mathcal{H} and the parameter space \Theta, the causal graph \mathcal{G} = (\mathbf{V}, \mathcal{E}), the list of index \mathcal{I} for all nodes \mathbf{V}. The set of edges \mathcal{E}_{\mathrm{Obj}} where each edge corresponds to an objectionable component. The ReferencePoint(·) configuration.

Output: The derivation of the predicted outcome \widehat{Y} that decouples objectionable components from the data generating process, and only makes use of neutral components.

Sort the list of index \mathcal{I} such that parent nodes, if any, appear before the node itself;

ForEach node index i \in \mathcal{I} Do // learn model parameters

If the number of direct parents of node V_i, i.e., the in-degree, d_{\mathrm{in}}(V_i; \mathcal{G}) > 0 Then

Fit model parameters in the local causal module between V_i and its direct parent nodes Parents(V_i), without any fairness constraint:

h_{V_i}, \hat{\theta}_{V_i} \leftarrow \underset{\theta \in \Theta, h \in \mathcal{H}}{\operatorname{argmin}} \mathcal{L}_{V_i} \left( h(\operatorname{Parents}(V_i); \theta), V_i; \mathcal{D} \right), \mathcal{L}_{V_i} is the loss function for V_i;

According to the sorted list of node index \mathcal{I}, apply the value instantiation rule (Algorithm 1) to each local causal module in sequence, and then derive prediction \widehat{Y} according to Equation (3).
```

Summary

- 1. We reveal and address the often-overlooked issue of disguised procedural unfairness
- 2. To decouple objectionable data generating components, we propose *value instantiation rule*
- 3. We configure *reference points* to further satisfy requirements of procedural fairness

Thank you!

Our Paper

OUR PAPER HERE!

Our Code Repository

