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Proposal

• Oversampling the minority class through synthetic generators has become a popular

solution for balancing data, giving rise to many rebalancing techniques, like ADASYN

and SMOTE.

• Practitioners usually lean on performance metrics to either refute or advocate for

adopting some resampling method.

• Increasing ethical and legal demands for fair machine learning models demand testing the

neutrality of these methods concerning fairness.

• We investigated the effects of oversampling on gender bias by analyzing statistical

parity difference (SPD) and equal opportunity difference (EOD) obtained from four credit

datasets.



Oversampling Methods

• SMOTE [1]

• Borderline-SMOTE [2]

• SVM-SMOTE [3]

• ADASYN [4]



Fairness

The inequality in credit scoring is evident since AB classes have 18% of denied credit. In

contrast, CDE has 41% even with significantly lower amounts (above 105 thousand against

thousands of reais) [5], and women have lower credit limits (23% against 28% of limits above

7600 reais) [6].

Statistical Parity Difference [7] quantifies the independence between the decision ŷ(X ) and

the protected attribute Z , and is given by:

SPD = P(ŷ(X ) = gain | Z = unpr)− P(ŷ(X ) = gain | Z = priv).

Equal Opportunity Difference (EOD) [8] assesses the disparity in access to a favorable
outcome ŷ(X ) = gain between the unprivileged group Z = unpr and the privileged group

Z = priv , when an individual rightfully deserves that outcome, that is, Y = gain (true positive

rate):

EOD = P(ŷ(X ) = gain | Z = unpr , Y = gain)− P(ŷ(X ) = gain | Z = priv , Y = gain).



Performance Metrics

The Balanced Accuracy is given by:

BalancedAccuracy =
1

2

(
TP

TP + FN
+

TN

TN + FP

)
.

The Area Under the Curve is given by:

AUC = P[p(y = 1|Xi ) > p(y = 1|Xj)|yi = 1, yj = 0].



Experimental Setup

Classifiers Oversamplers

• Logistic Regression • ADASYN

• Random Forest • SMOTE

• XGBoost • SVM-SMOTE

• Borderline-SMOTE

• Algorithms were optimized considering a utility measure to emulate a performance-driven

use of imbalanced methods.

• Baselines were trained to their standard procedure (loss for logistic regression and entropy

for the tree-based classifiers)

• Hyperparameter tuning used balanced accuracy to find the best parameters.

• Experiments were performed on the same test set (20% of total data).



Datasets

• Four publicly available financial datasets commonly used in credit scoring research.

• We excluded the categorical features from training data for all datasets, except for gender,

the protected characteristic defining groups in our analysis.

Dataset # samples # features class split (good vs. bad payers)

Home Credit 150,000 121 93.3% vs. 6.7%

Taiwan 30,000 24 78% vs. 22%

German 1,000 20 70% vs. 30%

PAKDD 39,988 28 80.2% vs. 19.8%



Results

Figure 1: Fairness metrics vs. Balanced Accuracy for models with hyperparameters tuned to maximize

Balanced Accuracy with a fixed decision threshold of 0.5.



Results

Figure 2: Fairness metrics vs. Balanced Accuracy for models with hyperparameters tuned to maximize

Balanced Accuracy with a fixed decision threshold of 0.5.



Results

Figure 3: Fairness metrics vs. Balanced Accuracy for models with hyperparameters tuned to maximize

AUC with a threshold defined by the maximal difference between TNR and FPR.



Results

Figure 4: Fairness metrics vs. Balanced Accuracy for models with hyperparameters tuned to maximize

AUC with a threshold defined by the maximal difference between TNR and FPR.



Conclusion

• Measuring the success of oversamplers requires reflections on ethical implications.

• Augmented synthetic samples may noisily replicate already discriminating samples.

• The unfettered use of oversampling can disseminate social bias.
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