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Motivation

* In material science and bio-chemistry, we want to sample rare events that are
associated with specific physical phenomena and estimate their probabilities.

* In this work, we focus on sampling the rare event that one molecule transits
between two stationary metastable states in 2D.

* The molecule follows the over-damped Langevin Dynamics.

dx = ~VU(x)/(m) - dt + /2kaT/(m7) - dB(?)

Energy function Brownian motion



Problem

* The energy function is:

U(x) = 0.05y + % (41 —z* —y?)? +2(z* -2)° +[(z+y)’ -1+ [(x —y)* —1]* - 2) .
(2)

* The two stationary metastable states are A and B, minima of
the energy field.

 We are interested in the rate event that the molecule starts
from A and eventually goes to B.



Optimization Problem

We represent the trajectories as v = (x,, Xq, - - . , Xy) and our bias potential is
parametrized by neural network 6.

Our obijectives are:
1. Ensure all the trajectories reach B

2. The distribution of successful trajectories is similar to the distribution of unbiased
successful trajectories
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(eq.7 in the paper)




Langevin Dynamics

with energy U
(eq.1and eq. 2)

Method

Minimize eq. 7 to train NN
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Use U = U + Uz(0)
and w to sample
trajectories v
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Training Process

The DNN-based bias potential eventually make a large portion of the trajectories
to move from A to B.
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Training Results

Ug(x), our method solved bias potential at 1200K Ugt (x), the ground-truth bias potential at 1200K
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Combine Past Knowledge

Combined Model
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Combine Training Process

The input is all the training trajectories (positions of the molecule only).

The training result is one bias potential that can generate trajectories in both channels.
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Results

Results at 1200 Kelvin. The successful trajectories look similar to the Monte Carlo
sampled trajectories.
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Numerical Comparison

Efficient Sample Size (ESS) measures the ratio of samples are effective in importance

sampling. ,
(D o W)
ESS L 1:; ES
- Z TR
1:; €S 7
Coefficient of Variation (CV) is the ratio between std. and the mean.
Temperature 1200K  Confidence Interval CV Success Rate ESSratio  fiain Lot
Our method A 4.037 &= 0.342e—6  3.0933 0.770 0.095 122 16
Our method B 3.232 +0.743e—5  8.402 0.396 0.014 14 16
Monte Carlo 4.410 &= 0.412e—6 1505.846 4.410e—6 - - 708




Robustness

Our method is robust in scaling up:

* The standard deviation of the estimator decreases as © (1/ \/% )

X The ESS and computation time grows linearly.
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Thank you!

Xinru Hua: huaxinru@stanford.edu
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