
Evaluation in MIR is fragmented, tedious to set up,
and narrow-scoped (robustness? efficiency?
explainability?)
 • Varying dataset implementations
 • Preprocessing
 • Annotations
 • Splits
 • Varying downstream implementations
 • Model size
 • Hyperparameters
 • Prediction aggregation
 • Metric implementation
➤ Evaluation in MIR is narrow-scoped
 • Robustness to deformations?
 • Reliability in new data?
 • Efficiency?
 • Explainability?
➤ Setting up evaluations in MIR can be tedious
 • Collecting and handling multiple datasets
 • Deciding on implementation details
 • Implementing enough tasks and approaches

mir_ref
Christos Plachouras, Pablo Alonso-Jiménez, Dmitry Bogdanov
Music Technology Group, Universitat Pompeu Fabra, Spain

Music Information Retrieval
Representation Evaluation Framework

Why is it needed?

Example evaluation

What is it for?

How do I use it?

What is it?

Code &
Results

mir_ref is an open-source library for evaluating
audio representations (embeddings or others) on a
variety of music-related downstream tasks and datasets.

It provides ready-to-use tasks, datasets, deformations,
embedding models, and downstream models for config-
based, no-code experiment orchestration. Components
are modular, so it's easy to add custom embedding
models, datasets, metrics etc. Audio-specific results
analysis and visualization tools are also provided.

We conducted an evaluation of 7 embedding models, 6
datasets and tasks, 4 deformations, and 5 downstream
model configurations, and found:
 • Most models struggle significantly with white noise and
gain reduction, but do better with mp3 compression.
 • The downstream setup often impacts performance
significantly; some information is not linearly separable.
 • Most models can't distinguish pitch classes.

(Scan QR for full results, or github.com/chrispla/mir_ref)

• Easily reproducible, holistic evaluation experiments
• Local aid for embedding model development
• Benchmarking
• To answer questions like:
 • How large should the downstream model be?
 • How densely should I sample embeddings?
 • How robust is my model to pitch shifting?
 • Can my model distinguish pitch classes?

How does it work?

$ python run.py -c my_config

to run all experiments in the config file. Individual
components can be run with deform, extract,
train, and evaluate. Sharing the config file allows
anyone to reproduce your experiment.

Please give us feedback and tell us use-cases!

Representation evaluation in MIR is
• fragmented
• tedious to set up (gathering/handling data, complexity)
• narrow-scoped (robustness? efficiency? explainability?)

Downstream implementation details in embedding model papers

Clone/Fork mir_ref, install requirements, and run

