DAREL: Training and Fine-Tuning Acceleration
of Real and Hypercomplex Models

Introduction

The industry is predisposed to the growth of neural network parameters and the
Increase in datasets size. It necessarily leads to an increase in the required
computational resources as well as the training time. Furthermore, every hour that
the GPU leads to an increase in carbon dioxide emissions into the atmosphere due
to its required power production [Strubell et al., 2019].

This paper makes the following primary contributions:

1. Introduced a novel two-stage method that is designed to accelerate the pre-
training of CNN and fine-tuning of Large Language Models (LLM) by applying the
Importance sampling strategies based on loss information. As a result, solid
acceleration of ResNet18 pre-training (up to 2.03x) and GPT2-M fine-tuning (up
to 1.43x) are demonstrated.

2. Presented the concept of a training budget for CV pre-training as a combination
of maximum GPU memory utilization and maximum training time.

3. DAREL improves the state-of-the-art method for LLM fine-tuning (LoRA [Hu et
al., 2021].) and allows for the increase of BLEU score for GPT2-M by 1.81 p.p.
with 25% acceleration for E2ZE-NLG dataset.
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Figure 1. Acceleration methods. The highlighted area was investigated in this work.

The state-of-the-art in data reduction is achieved with Intellectual Data Selection
(IDS) and Adaptive Online Importance Sampling (ADONIS) methods [Demidovskij et
al., 2023]. The IDS methodology filters the training datasets by selecting diverse
samples from each class in a labeled dataset by clustering samples’ embeddings
with K-Means. The ADONIS aims to reduce the number of backward passes by
choosing samples from the available training data and constructing new training
batches containing only the important samples. IDS and ADONIS are greedy In
terms of required resources, hyperparameters have to be handcrafted and no
support for LLM fine-tuning,.
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Figure 2. Selected samples from CIFAR100 class #58 (pear) via
DAREL offline (a) and IDS (b). In (a) and (b) cyan color denotes
selected samples, and the orange color signifies rejected samples.
In (b) black triangle stands for the class prototype
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Figure 4. Samples selected via IDS from CIFAR100 from class #58
(pear). The first row contains samples removed from training set,
the second — kept. The leftmost image — class prototype.
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Proposed Method

DAta REduction with Losses (DAREL) is a two-stage training and fine-tuning
acceleration method that is designed to be budget-aware and based on the idea that
reducing the number of samples due to a certain rule decreases the number of
training steps, thus reducing the overall training time for a CNN and fine-tuning time
for LLM. The two stages of the algorithm are called offline (happens before training)
and online (happens during training). The hyperparameters of both stages are
automatically adapted for the given budget.
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Figure 5. Scheme of Data Reduction with Losses algorithm. For CV pre-trained ResNet18 is utilized as a pre-trained model, for LLM fine-
tuning pre-trained model and model are the same models.

Algorithm 1 DAREL (online stage)

I: H « deque(y): history of losses as double-ended queue of size v

2: batchyrgin + {}: batch for training

3 ,n € My = 1: number ol epochs when loss information 1s considered
actual

4: losses + {}: loss history

5: I<: number of epochs to train

6: w: number of epoch to start DAREL online

7. last_updale « (0 number of last epoch when loss history was updated

&k« 1: traiming step {
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fine-tuning fine-tuning
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9: while epoch ¢ < [ do

10:  for batch batehygin rom 2 do

I1: if + < w then

12: fper  trainBatch(byain, [,0-1)

13: k+ k+1 Figure 6. DAREL application areas

14: batehgin < 1}

15: continue

16: end if . -

17- it i — last_update < 1) then Algorithm 2 DAREL (offline stage)

I8: losses + [Lm(]) I: Mode: mode of selection {EASY, HARD)}

19: end if 2: «: selection ratio

20 for example ¢ from balchy, . loss [ from losses do 3: p: pre-trained model for a classification task, for example ResNet18
21: H+« HUI 4: €} = {}: final dataset

22: P+ buildHistogram(H): losses histogram representing losses 5: for each class ¥ in D do

23: p < PMFE(®, [): give prelerence to the most frequent losses 6: L' = |D*'|: number of samples in class

24: is_chosen < choose(p) 7: @' = {inf}: losses for each sample in class [’

25: it is_chosen = 1 then 8 for each sample j in D' do

26: batchiypin < batchy g, Ue 9: H‘ ¢ p(j): caleulate loss for each sample

27: end if 10:  end fnr

28: if |batchirain| = b then 11: O ¢ sort(0, Mode): sort samples w.r.t by loss values in ascending
20: S 4 trainBatch(byrain, [e-n) order il mode 1s EASY, descending otherwise

30: batchyygin + {} 12: €+ QU {{};'- s = 1,2,..., |aL'|}: add selected samples to final
31: end if dataset '

32: end for 13: end for

33:  end for

34: end while

Budget-aware configuration

The training budget B(t,m) is defined relatively with t as a ratio of full training time T,
so that maximum training time is t - T, and also m as a ratio of memory required for
full training M, so that maximum memory required is m - M. Let D denote a training

dataset, E — number of epochs.
Trew =ty - Np - E (1)

Tt . > -
A:{Tnew-av Tt 2 Tnew - - 0.1 oy

0.1, otherwise

The t, Is the time required to train epoch with the size of batch equal to b. T,,,,, IS an
approximation of full training time within a memory budget. The a is the selection
ratio of the DAREL offline stage, A is the selection ratio of the online stage, n is the
scheduler of the online stage.

_ 0.8, by default 3)
TN EEL, Tt < Thew 0.8 A
1, by default
n 2, if0.5<A<0.8 4)
3, ifA<0.5

Before training starts the A is clipped to range [0.1,0.5] to guarantee the
acceleration.
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Evaluation

CV Training

The optimal budget for CV training is defined as B(t = 0.8 m = 0.8). Within this
budget, DAREL accelerates the ResNet18 training on CIFAR-100 by 25% with a 4.57
p.p. accuracy drop and Hypercomplex ResNetl8 by 67% with a 2.91 p.p. drop.

Table 1: Budget-aware training of ResNet18 and Hypercomplex ResNetl18 (ResNet18-HC) on CIFAR-100 with DAREL
(CPU 3.0GHz 32 cores, 1xGPU 16GB)

Model Method Batch o« A 1 Epoch Boost, Acc. Memory(((Ose
X drop, cut,x cut x
p-p-

ResNetl8  B(t = 1,m = 1) 28 0.8 028 3 200 146 301 166 3.12
B(t = 0.80,m =0.80) 64 08 043 3 121 125 457 193 205
B(t=0.80,m=070) 64 08 05 2 121 126 497 193 146
B(t=0.80,m =055 32 08 020 3 8 125 1504 203 271
B(t=0.70,m=080) 64 08 043 3 109 143 1058 193 23
B(t=070,m=070) 64 08 05 3 8 143 113 193 137
B(t=0.70,m=055) 32 08 01 3 61 144 2153 203 546
B(t=0.50,m=080) 64 08 011 3 78 199 1143 193 30
B(t=050,m=070) 64 08 011 3 75 20 114 195 32
B(t=050,m=055) 32 06 01 3 49 203 3218 203 783

ResNet|8-HC B(t = 1,m = 1) 28 08 05 1 200 209 303 100 199
B(t=0.80,m=080) 64 08 05 1 200 167 291 148 173
B(t=070,m=080) 64 08 05 2 195 160 265 154 172
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Figure 7. The chart of the accuracy of ResNetl8 CIFAR-100 budgeted training with DAREL.

LLM Fine-tuning

DAREL allows acceleration of the LoRA methodology and achieves 1.43x
acceleration for GPT2-M fine-tuning with a corresponding increase of BLEU by 1.81
p.p. with a selection parameter equal to 0.7.

Table 2: Fine-tuning experiments of GPT2 family on E2E-NLG with DAREL (CPU 3.0GHz 32 cores, 2xGPU 16GB)

Models Method Boost BLEU{T TER| METEOR{ NISTT
GPT2-S LoRA - 67.3 66.43 75.82 6.39
LoRA + DAREL (a« = 0.9) 1.12 68.22 65.59 73.79 6.06
LoRA + DAREL (a« = 0.8) 1.26 69.52 64.92 74.79 6.09
LoRA + DAREL (a« = 0.7) 143 69.53 65.62 73.59 5.93
GPT2-M  LoRA - 65.9 69.36 79.48 6.97
LoRA + DAREL (« =0.9) 1.11 67.65 68.07 79.37 6.96
LoRA + DAREL (a« =0.8) 1.25 67.71 67.54 78.46 6.93
LoRA + DAREL (a« = 0.7) 144 66.03 68.24 7791 6.81
GPT2-L LoRA - 69.93 67.45 81.73 7.32
LoRA + DAREL (aa =0.9) 1.11 70.02 67.38 81.68 7.33
LoRA + DAREL (aa =0.8) 124 68.36 68.02 81.02 7.2
LoRA + DAREL (a« =0.7) 143 68.07 68.48 81.01 7.15

Conclusion

Training acceleration for ResNetl8 is up to 2.03x and accelerates Hypercomplex
ResNetl8 by up to 2.09x while for fine-tuning DAREL allows to achieve 1.43x
acceleration for GPT2-M fine-tuning with corresponding increase of BLEU by 1.81
p.p. Further directions: NLU support and interoperability with other LLM PEFT
methods such as 14"3 and Prompt-Tuning.
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