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Robust fine-tuning

o Adapting large-scale pre-trained models under distribution shifts

o Goal: good out-of-distribution (OOD) generalization as well as in-distribution
(ID) generalization after fine-tuning

Standard fine-tuning

train & eval eval

ID Accuracy OOD Accuracy
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Increasing ID adaptation trades off
OOD generalization capability



Robust fine-tuning

o Adapting large-scale pre-trained models under distribution shifts

o Goal: good out-of-distribution (OOD) generalization as well as in-distribution
(ID) generalization after fine-tuning
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Research motivation

o There is another crucial aspect of model evaluation: confidence calibration

How well does the confidence output by our model
match the accuracy?

expected calibration error
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neural networks exhibit poor calibration!



Research motivation

o There is another crucial aspect of model evaluation: confidence calibration

There have been many arguments that modern
neural networks exhibit poor calibration!

These raise concerns about developing Al-driven
decision-making systems on high-stakes tasks




Research motivation

o Existing works on fine-tuning have overlooked confidence calibration!

Standard fine-tuning Robust fine-tuning
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Research motivation

o Existing works on fine-tuning have overlooked confidence calibration!

We initiate the discussion
on calibration of fine-tuned
foundation models

under distribution shifts!

Standard fine-tuning Robust fine-tuning

RQ1) How the calibration of a pre-
trained model will be affected by

fine-tuning it on a specific dataset?
Accuracy

RQ2) Will robust fine-tunings ensure

calibration of the model as well as

Calibration generalization both on ID and O0OD?




Research motivation

o Our findings

* Standard fine-tuning hurts the calibration of zero-shot vision models

in terms of ID and especially OOD expected calibration error (ECE).
* While SOTA robust fine-tuning method FLYP [1] maintains ID calibration somewhat,

it also degenerates OOD calibration.
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Research motivation
o Our findings

* Standard fine-tuning hurts the calibration of zero-shot vision models
in terms of ID and especially OOD expected calibration error (ECE).

* While SOTA robust fine-tuning method FLYP [1] maintains ID calibration somewhat,
it also degenerates OOD calibration.
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Method: Calibrated Robust Fine-tuning (CaRot)

o Following FLYP [1], we adopt a contrastive loss as our basic learning objective

* Goyal et al. empirically showed that fine-tuning vision-language models (VLM) with
contrastive loss brings huge benefits in terms of ID adaptation and OOD generalization.
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Method: Calibrated Robust Fine-tuning (CaRot)

o Taking inspiration from a finding that label smoothing [2] helps calibration as
well as generalization [3], we first try equipping label smoothing with
contrastive loss (Lycy w/ Ls in Figure).
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Method: Calibrated Robust Fine-tuning (CaRot)

o We further propose a multimodal (self-)knowledge distillation loss (Lykp)
which can be worked as a form of data-dependent label smoothing [4].
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Method: Calibrated Robust Fine-tuning (CaRot)

o Understanding multimodal knowledge distillation loss
1. Exponential moving average (EMA) of VLM'’s learning weights Y ap+ (1 —a)b

= it gradually blends a multi-domain calibrated one (pre-trained VLM)
with an ID calibrated one (fine-tuned VLM)
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Method: Calibrated Robust Fine-tuning (CaRot)

o Understanding multimodal knowledge distillation loss

2. Output S|-m|Iar|t.y map of the EMA teacher mpdel Lao(B,6) = SIAKL@ la1)) + KL@d")
= Holds rich multimodal relation structure for each instance i=1
= Produce data-dependent soft label that supports and regularizes the learning of student model

Zi i iZE Student ¢
of a burger VLM 9 I

—————————————————

1 Output : Soft label

I
of a dog Teacher ; :
of a cat n | 1
of a burger VLM l/} 1 :

A ' 'L
EMA update ' Lmgp ,_ e ‘f/_L_S _j_ -
| / 1 ‘l’ \V )

:

]

I

I

1

o
=1
o]
o
(—F
an
)
=
o,
=
(@]
ek



Results

o Findings

1. During adaptation on the ID dataset, FT sacrifices the OOD generalization capability
of pre-trained model (zero-shot CLIP) as well as ID/OOD calibration

2. While WISE-FT [6] showcases strong OOD Acc,, it significantly degenerates the

calibration of the pre-trained model on ID and OOD datasets

w/o TS w/ TS
Method ID Acc. (1) OOD Acc. (1) | IDECE({) OODECE({) | IDECE({) OODECE()
7S 0.6832 0.5840 0.0571 0.0836 0.0561 0.0748
FT 0.8153 0.5750 0.0884 0.2186 0.0629 0.1629
FT w/ LS 0.8223 0.5833 0.0460 0.1147 0.0481 0.1282
WiSE-FT 0.8043 0.6350 0.2129 0.1764 0.0872 0.1533
WiSE-FT w/ LS 0.8068 0.6405 0.5231 0.3601 0.3382 0.2425
FLYP 0.8258 0.5946 0.0643 0.1831 0.0392 0.1217
FLYP w/ LS 0.8271 0.5975 0.0459 0.1295 0.0427 0.1145
CaRot 0.8319 0.6197 0.0395 0.1093 0.0380 0.0980




Results

o Findings

3. FLYP [1] achieves strong generalization on ID and OOD, and relatively good ID

calibration, but still greatly degrades the OOD calibration.

4. Temperature scaling (TS) helps calibration somewhat,
but the gap between ZS OOD and fine-tuned ones still non-negligible.
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Results

o Findings
5. Label smoothing (LS) remarkably improves the calibration as well as generalization
for both contrastive learning and cross-entropy-based learning.

6. CaRot gets superior results overall metrics ID/OOD generalization and calibration
which verify the effectiveness of data-dependent LS coupled with contrastive loss.
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https://twitter.com/Changdae Oh



https://changdaeoh.github.io/
https://www.linkedin.com/in/changdae-oh-440587215/
https://twitter.com/Changdae_Oh

