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● Reconstruction problems often performed under pixel-wise L2 loss

○ Inexpensive, differentiable and smooth solution space 

● Assumption that all data points are independent and of equal importance à Limited contextual 
awareness 

● Variance minimisation focuses on low frequenciesà often leads to averaged/blurry results

e.g. PCA Analysis of error 
between MNIST and

random noise

Increased Variance / Decreased frequency

𝑓 =
1
2 | 𝒑 − 𝒙 |𝟐

Motivation and Aims
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Motivation and Aims

Ongoing work in the machine learning community 
on perceptual quality

• Feature-wise losses, adversarial losses, focal 
frequency loss, perceptual losses, etc

• Expensive 
• Unstable
• Data Biases

Our Wiener Metric
(from Wiener-filter theory)

• Convolution-based metric aimed at 
promoting full-spectrum data recovery

• Does not assume local element-wise 
relationships

• Stable with differentiable and smooth solution 
space

• Inexpensive
• No data biases
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Wiener Loss Wiener Diffusion
OURS

Motivation and Aims

MRI imputation results on heavily corrupted data Batch of generated MRI samples using the Wiener Diffusion
(no training required)
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Part I: 
Wiener Filter 

Theory

Part II: 
Wiener Loss

Part III: 
Wiener 

Diffusion
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● Any signal 𝒙 can be constructed through a signal 
𝒚 via a convolutional matching filter 𝒗 :

𝐱 = 𝐲 ∗ 𝐯

● Reformulate 𝒚 as a Toeplitz matrix 𝒀 to achieve 
convolution in matrix form:

𝐱 = 𝐘𝐯

● A convolutional filter that is a Dirac delta function at 
zero lag (convolutional identity) leaves the input 
signal 𝒚 unchanged

Wiener Filters: Principles
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● Wiener filter computes the convolutional
matching filter 𝒗 on a statistical approach that 
minimises the mean-squared error between 
the target (𝒚) and reconstructed signal (𝒙) 

● The coefficients of 𝒗 are the ones that minimise 
the functional 𝑔 (smooth and differentiable)

● Interpret as: cross-correlation of the target and 
reconstructed data, deconvolved by the 
autocorrelation of the target data (Warner and 
Guasch, 2016)

𝐯(𝐱, 𝐲) = (𝐘𝐓𝐘)#𝟏𝐘𝐓𝐱 𝐯(𝐱, 𝐲) = ℱ#%
ℱ 𝐲 ℱ∗ 𝐱
ℱ 𝐲 ℱ 𝐲

Data
domain

Frequency
domain

g =
1
2 | 𝐘𝐯 − 𝐱 |

𝟐

dg
d𝐯 = 𝐘'𝐘𝐯 − 𝐘'𝐱

Wiener Filters: Principles

Michael Warner and Lluís Guasch. Adaptive waveform inversion: Theory. Geophysics, 81(6):R429–R445, 2016. 
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● Inspired by the work of Warner and Guasch (2016) on adaptive waveform inversion

● Construct an objective whose minimisation maximises the likelihood of the zeroth-
lagged Dirac delta function (convolutional identity) under a multivariate Gaussian 
distribution with mean defined as the data-matching Wiener filters

Michael Warner and Lluís Guasch. Adaptive waveform inversion: Theory. Geophysics, 81(6):R429–R445, 2016. 

Wiener Loss: Formulation

𝑝 𝛅 𝐯 = :
()%

𝒩 𝛅 | 𝐯(𝐱𝛉
( , 𝐲 ( ), 𝚺

− log𝑝 𝛅 𝐯 ∝ @
()%

1
2 𝐯(𝐱𝛉

( , 𝐲 ( ) − 𝛅
'
𝚺#𝟏 𝐯(𝐱𝛉

( , 𝐲 ( ) − 𝛅
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● 𝚺#𝟏 is the covariance matrix decomposed as 𝑾+𝑾 where 𝑾 is an hyperparameter monotonic 
function that penalises non-zero lag energy in the matching filter

ℒ, 𝐱𝛉, 𝐲 =
1
2 𝐖 𝐯 𝐱𝛉, 𝐲 − 𝛅 -

Wiener Loss: Formulation

−log𝑝 𝛅 𝐯 ∝ @
()%

1
2 𝐖 𝐯 𝐱𝛉

( , 𝐲 ( −𝛅
-

Mahalanobis distance
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● In other words: train the network to learn the reconstruction of a target by implicitly driving the 
corresponding Wiener filter toward a convolutional identity, i.e. delta function at zero lag

Wiener Loss: Formulation

ℒ, 𝐱𝛉, 𝐲 =
1
2 𝐖 𝐯 𝐱𝛉, 𝐲 − 𝛅 -

● Convolutional filters incorporates conceptual 
awareness lacking in pixel-wise norms

● Least-squares provides convex optimisation 
spaces

● General data comparison method that is 
perceptually aware
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● MRI T1-weighted 2D samples in the 
midsagittal plane

● 553 samples of size 1x256x256 from HPC 
Young Adult Database

● Undersampling mask applied for input data: 3 
pixels in width, 1 pixel in spacing

● UNet of 3 channels, 3 residual blocks and 
Mish activation function

● Adam optimiser, learning rate 1e-2, 500 epochs Masked 
Input

Target

Wiener Loss: MRI Supervised Imputation

Van Essen et al. The human connectome project: a data acquisition perspective. Neuroimage, 62(4):2222–2231, 2012. 
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Bicubic MSE Wiener 
Loss

MAE 4.09 𝑒!" 1.93 𝑒!" 2.22 𝑒!"

MSE 2.60 𝑒!" 1.35 𝑒!" 1.71 𝑒!"

Wiener 
Loss 0. 21 0.14 9.16 𝑒!#

SSIM 0.80 0.91 0.90

LPIPS 𝟎. 𝟑𝟐 𝟎. 𝟏𝟏 𝟕. 𝟗𝟑 𝒆!𝟐

FID 𝟒. 𝟏𝟐 𝟏. 𝟔𝟔 𝟎. 𝟐𝟑

OURS

Wiener Loss: MRI Supervised Imputation

● Superior recovery of finer 
structures of the scan, aliased 
or blurred in other methods 

● Improved statistical 
representation
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● Wiener Loss 1D: flattening data in all 
dimensions, filter size C*H*W

● Wiener Loss 2D: one filter per channel, 
filter of size 1 x H x W 

● Wiener Loss 3D: filter size C x H x W

● Complexity of FFT implementation 
comparable to MSE, ~ one order of 
magnitude more expensive

Complexity graphs of (a) computational time and (b) memory usage; tested using 
torch.profile with images of size 3 x n x n

𝐯 = (𝐃𝐓𝐃)"𝟏𝐃𝐓𝐱 𝐯(𝐱, 𝐲) = ℱ"$ ℱ 𝐲 ℱ∗ 𝐱
ℱ 𝐲 ℱ 𝐲

Toeplitz FFT

Computation and Memory Complexity

𝑶(𝐥𝐨𝐠 𝒏) - computational
𝑶(𝒏𝟐) - memory
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Wiener Diffusion: Energy-based models recap 

● The probability density of an energy-based model 
(EBM) is given by the Boltzman distribution 

● Probability likelihood computationally intractable 
due to normalisation term in the denominator

● Langevin dynamics can sample 𝑝(𝒙) through the 
gradient of the energy function 𝑬 (score), where 
the normalisation term vanishes 

𝐱<=% ← 𝐱< −
>6
-
∇𝐱E 𝐱< + 𝐳<, for t = 0, 1,… , T − 1

Yang Song and Diederik P Kingma. How to train your energy-based models. arXiv preprint arXiv:2101.03288, 2021. 
Song, Yang, et al. "Score-based generative modeling through stochastic differential equations." arXiv preprint arXiv:2011.13456 (2020).

Using Langevin dynamics to sample from a mixture of two 
Gaussians. Score function ∇𝐸 (the vector field) and 

density function 𝑝 (contours)

𝑝 𝐱 =
exp(−E 𝐱 )

∫exp −E 𝐱 d𝐱
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Wiener Diffusion: Formulation

E 𝐱 =@
()%

1
2
𝐓𝐯 𝐱, 𝐲(

-

𝐯 𝐱, 𝐲(
- +

γ
2 𝛅⨂ 𝐯 𝐱, 𝐲( −𝛅

𝟐

● While training an EBM usually requires the estimation of the energy or score functions, we define 
an energy function that non-parametrically drives the matching Wiener filters of the sample 𝒙
undergoing diffusion to all samples 𝒚 of the dataset towards a delta function at zero lag:

Drives the data-matching Wiener 
filters towards zero-lag spikes
by minimising the Rayleigh 

quotient of a hyper-parameter 
penalty matrix T

Ensures the energy-based model is 
sensitive to amplitude information 
by encouraging the zeroth-lag of the 

filters to have an amplitude of 1.
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Wiener Diffusion: MRI Generative Modelling

Ground Truth Samples Generated Samples through 
Wiener Diffusion

Example of the sampling process through Langevin Dynamics 
(top) and 30 closest Wiener filters to the sample (bottom)
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Wiener Diffusion: Considerations
● Well suited to scenarios with limited data à possibilities for inexpensive expansion of medical 

datasets

● Can also serve as a prior generator or as a regularisation term in imaging workflows

● Diffusion process can be conditioned at inference time by specifying the data that defines the 

energy function à reduces biases (e.g. ethnicity, age)

● Sampling in latent space for stability

● Monotonically increasing gradient towards zero-lag:

○ Prevents collapse to global barycenters

○ Required for sampling different distribution modes
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● New method to measure (dis)similarities between 
paired samples inspired by Wiener-filter theory. 

● Convolution-base: promote preservation of 
contextual information

● Inexpensive, scalable and differentiable

● Novel objective function: Wiener Loss

● Novel non-parametric energy-based model: 
Wiener Diffusion 

● Readily suited for a wide a range of machine 
learning and inverse problems, inc. imputation, 
regularisation, dataset expansion…

Summary

E 𝐱 =@
()%

1
2
𝐓𝐯 𝐱?, 𝐲(

-

𝐯 𝐱?, 𝐲(
- +

γ
2 𝛅⨂ 𝐯 𝐱𝛉, 𝐲( −𝛅

𝟐

ℒ, 𝐱𝛉, 𝐲 =
1
2 𝐖 𝐯 𝐱𝛉, 𝐲 − 𝛅 -
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Ethical Statement 
Our research demonstrates that our new methodology for data comparison can statistically enhance images from 

limited-resolution scans and generate new samples from the same distribution. Despite these advantages, we highlight 
an ethical concern about potential biases stemming mainly from exclusive statistical representation of the training data 

and network architecture. These biases pose a significant risk in identifying misrepresented pathologies and can mislead 
clinical analyses. In this work, we used an MRI dataset of healthy adult brains to prove and validate our concept, but we 

emphasise the need for further research with diverse datasets to substantiate our findings. 

Acknowledgments
George for his support, proactivity and knowledge

My supervisors Lluis and Mike
WTRUST team: Oscar, Carlos, Yao

Jo and Adriana for ongoing support with my PhD


