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SUMMARY CONTRIBUTIONS RESULTS: SSFL vS DISTPFL vS FEDAVG-FT

Neuroimaging advancements have increased data sharing among re- Sparse Salient Federated Learning (SSFL) 1s a novel paradigm for Clas Disriution with loca accuracy for 21 ABCD Sies s
searchers. Yet, institutions often retain data control due to research cul- federated learning with sparse models that aims to address 1ssues of cur- S A S A S
ture, privacy, and accountability. There 1s therefore a need for tools that rent sparse FLL. methods. The primary benefit of our approach is that we | I I — =
analyze combined datasets without transmitting the actual data. We 1n- find sparse models to be trained using the information from the data at i=-—-—= AR .
troduce a decentralized sparse federated learning (FL) approach that lo- all the client sites and find a sparse network or a subnetwork to be trained | e I —
cally trains sparse models for efficient communication in such settings. before the training begins. S ———— -
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client sites throughout the training, we reduce communication costs, es- We tr 411 only a subset of Fhe parameters of client .moc.iels n a.de
pecially with larger models and varied site-specific resources. We vali- centralized manner, resulting in a highly communication-efficient
date our method using the ABCD data. f.ederated training technique, resulting in sparse models at client
sites.
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By leveraging sparsity and transmitting only some parameters among
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B ACKGROUND e We propose a generalized version of gradient-based connection Conder Classification: SSFL ve DicPEL

. . e | | importance criterion for Federated Learning in the non-IID setting. B e T i T e B =
Gradient-based measures [1] identify important connections in the 200
network by utilizing a sensitivity measure defined as the change in the  SSFL 1dentifies a subnetwork prior to training, leveraging parame- .
loss of the connections 1in question were removed. More formally, the ter saliency scores keeping in mind the distribution of local client |
effect of the weight @, on the loss 1s: data 1n non-IID scenarios 9 o
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| Ip the FL setting fgr N different cl?ent sites us1n%hth§ saliency crite- ALGORITHM s . H“Hh
rion in 1, we get the saliency score s(60y; Dy, ) for the k" site. To calculate — = FedAvg FT (Dense Baseline) )
the score Sy, we pass a few minibatches of data and average the saliency Algorithm 1 SSFL T ey
scores over the few minibatches. To create the global mask m, we av- Input: Total number of clients K Total communication rounds R: Total local training steps T in each Figure (top): : Gender differences in each of the 21 ABCD sites along
erage all the saliency scores from N different sites and apply the rop-k ﬂm;‘.‘;ﬂmﬁ;ﬁfﬁi ﬁ:&iﬂ? of clients K participating in each round. with the performance of the model. Figure (bottom): : Performance
operator to find the most important connections based on the initializa- e ot e onsmit to all lients comparison of SSFL with DistPFL and FedAvg-FT on 3D AlexNet
tion and the data on all the client sites. Thus, to generate the global mask 1 § =341 Psk(wo) # Get the aggregated global saliency scores Model.

: m = 1[s(w;) > s(wg)] # calculate common mask from aggregated saliencies

m, € {0, 1}191 we select for the fop-k ranked connections as:

: Transmit m to all the sites.

D W am — We o ©m #apply the mask at all sites &
my =1[s(0:) > s(65)] o 0w 1do | CONCLUSION
I C1,C24.uey € ~ Unif(C) # Sample K clients uniformly from the set of all clients C . .
for sito  in parallel for all K clicats do | We propose SSFL, a novel federated learning paradigm that collab-
W = c8t(wk,m); #Gather all masked weights wi.m where k€ {1,2,3, ... K] oratively trains a highly sparse model in a non-IID setting. The major
. . . m - . m | #combine the weights ol lels 1n the selected sites _ .
where, 0, is the k' largest parameter in the model and 1]-] is the | EU {_1([;' 2ok 8 ) S benefits of SSFL over the existing methods 1) In contrast to most exist-
indicator function. C fert— 0107 1 do ing methods SSFL,.only ne.ed tq trz}nsmlt highly sparse parame@rs pe-
8 ¢ VwLl(Wn;',y") © m# calculate and mask gradients tween server and clients which significantly reduces the communication
. it ot et # take imization step wi asked eradients o asked weight: . . .
ur Stud fOCU.SGS on the taSk Of Cl&SSlf ln a arthl ant,s sex based Wy,  — Whm — 178, # lake optimization step with masked gradients on masked weights time as Well as the bandWIdth 2 W€ compute a barameter SallenC that
y y g p p : end for
. . : end for ot . .
on MRI scans, by employing a 3D variant of the well-known AlexNet 8 tcansmit the non-zero elements of global models . back to the clieats. captures the local data chara.ctenstlcs at.che.nt sites and create a global
model. The 3D variant was specific channel configuration for the con- 19: end for model mask based on that saliency, resulting 1n a client data-aware sparse
volutional layers set as: 64C-128C-192C-192C-128C, where 'C’ de- model.
notes channels.Our training consists of 5 epochs with 200 communica-
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