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1.Introduction and Challenge Overview:
1. Emphasis on foundation models in medical imaging, addressing challenges with limited high-

quality annotated datasets.
2. Three tasks: Thoracic Disease Screening, Pathological Tumor Tissue Classification, Lesion 

Detection in Colonoscopy Images.
2.Methodology:

1. Split into exploratory data analysis, preprocessing, data augmentation, model training, and 
ensemble strategies.

2. Discussion on various models used, including Vision Transformers and ResNets.
3. In-depth look at data augmentation techniques for different tasks.

3.Results:
1. Performance of various models across tasks.
2. Analysis of results using metrics like AUC, Accuracy, and Aggregate Score.
3. Demonstrated the benefits of ensemble models and fine-tuning strategies.

4.Conclusion:
1. Emphasizes learning experience and the effectiveness of ensemble models.
2. Highlights the importance of grid search in optimizing models and strategies.
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Focus: Participation in the prestigious MedFM Challenge 2023.
Challenge Relevance: Addresses the scarcity of high-quality, annotated 
medical imaging datasets.
Main Objectives: Enhancing foundation models for medical image 
analysis.
Key Tasks: Involves Thoracic Disease Screening, Pathological Tumor 
Tissue Classification, and Lesion Detection in Colonoscopy Images.
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MedFM Challenge:



Methodology

1.Exploratory Data Analysis: Initial assessment of datasets to 
understand characteristics and challenges.

2.Data Preprocessing: Techniques to clean and standardize the data for 
model input.

3.Data Augmentation: Application of various augmentation strategies 
to enhance dataset diversity.

4.Model Selection and Training: Discussion of models like Vision 
Transformers and ResNets, and their training approaches.
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Data
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Colon: 5656 images (9.5 GB)                  Endo: 1811 images (2.7 GB)                    Chest: 2141 images (2.6 GB) 

2 classes    4 classes                  19 classes



Data augmentation colon

1.Dataset Overview: Uses the Colon dataset, divided into 2 categories 
for tumor tissue classification.

2.Augmentation Process: Implements random resized crops and 
horizontal/vertical flips to enhance robustness.

3.ColorJitter Augmentation: Adjusts image brightness, contrast, color 
saturation, and hue to improve classification accuracy.

4.Data Loading Configurations: Varies in batch size and pipeline across 
training, validation, and testing phases for optimal performance.
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Data augmentation Endo

1.Dataset and Challenge: Focuses on the Endoscopy dataset with four 
classes, addressing challenges from specular reflections.

2.Adaptive-RPCA Implementation: Utilizes Adaptive-RPCA for 
identifying and removing reflections, enhancing image clarity for 
classification.

3.Training Data Augmentation: Applies random resized cropping and 
horizontal/vertical flips to enhance model generalization.

4.Data Processing and Loading: Simplified testing data processing with 
consistent resizing, and tailored data loading configurations for 
training and validation.

14.12.23 8



Application of Adaptive-RPCA on a selection of 
endoscopic images 
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Data augmentation Chest

1.Dataset and Preprocessing: Utilizes the Chest dataset with 19 
classes; RGB images normalized using specific means and standard 
deviations.

2.Training Augmentation: Incorporates random affine transformations, 
resizing, and horizontal flips, with crop scales tailored to the model.

3.Testing Process: Simplifies augmentation, resizing images to specific 
resolutions, with a focus on model evaluation.

4.Optimization: Employs a hyperparameter grid-search to determine 
optimal training batch sizes and randomization seeds for each model.
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Models
1.Vision Transformer (ViT): Transforms images into sequences of patches for 

analysis, excelling at capturing long-range dependencies through self-
attention.

2.Visual Prompt Tuning (VPT): Fine-tunes pre-trained transformer models 
using visual prompts, optimizing efficiency by learning only the prompt’s 
embedding.

3.ResNet: Employs skip connections to overcome gradient issues in deep 
learning, allowing for efficient learning and rapid hyperparameter iteration.

4.Swin Transformer: Enhances ViT with a hierarchical approach and sliding 
window self-attention, offering better efficiency and scalability, especially 
in Swin V2.
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Hyperparmeter optimization
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Ensemble technics
1.Expert-per-Task: Selects the top model for each task/setting.
2.Expert-per-Class: Chooses top model for each class in a task/setting.
3.Weighted: Assigns weights to top-k models per class, normalized before combining predictions.
4.Performance-Difference-Weighted: Weights models based on performance difference from the 

lowest performer.
5.Performance-Difference-Log-Weighted: Similar to above but with log scaling.
6.Weighted-Expert-per-Class: Builds on weighted strategy with optional scaling; normalization on 

final predictions.
7. Log-Weighted-Expert-per-Class: Uses log scaling on the weighted-expert-per-class strategy.
8.Expo-Weighted-Expert-per-Class: Applies exponential scaling in the weighted-expert-per-class 

method.
9.SM-Weighted-Expert-per-Class: Incorporates softmax scaling in the weighted-expert-per-class 

strategy.
10.Rank-Based-Weighted: Ranks models, setting weights inversely proportional to their ranks.
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Ensemble Gridsearch 

1.Model Assessment: Evaluated 1,200 models with an average of 18.2 
models per setting, leading to a top-k parameter of 20.

2.Unique Approaches: Resulted in 8,190 unique approaches (45 
settings x average 18.2 top-k x 10 strategies).

3.Structured Approach: Implemented a timestamped directory for 
systematic segregation of model outputs based on task, shot, and 
experiment.

4.Selection and Application: Adopted a grid-search-like strategy for 
model selection, applying the best-performing ensemble strategies 
from the validation set to the final submission.
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Results and Performance Analysis
1.Model Performance Metrics: Evaluation using AUC, Accuracy, and 

Aggregate Score.
2.Comparison Across Tasks: Analysis of model effectiveness in different 

tasks.
3.Ensemble Model Benefits: Demonstrating improved results with 

ensemble strategies.
4.Fine-Tuning Impact: The significance of model fine-tuning in 

performance enhancement.
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Conclusion
1.Swin Transformer V2 Efficiency: Swin Transformer V2 demonstrated 

remarkable performance, highlighting its effectiveness in medical 
image classification tasks.

2.Ensemble Model Strength: The use of ensemble strategies 
significantly enhanced prediction accuracy, proving their value in 
complex challenges.

3.Crucial Role of Data Preparation: Effective data preparation played a 
key role in model performance, underscoring its importance.

4.Impact of Data Augmentation: Data augmentation techniques were 
crucial in improving model robustness and generalization capabilities.
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