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Generative networks

Easy distribution X € R”.
Hard distribution Y € R, What can Y be? ]
Generator Network g : X — Y.

Previous Work
» Universal approximation theorem:
Shallow networks approximate continuous functions.

» “On the ability of neural nets to express distributions”:
Upper bounds for representability & shallow depth separation.

Our Contribution: Wasserstein Error Bounds

> (n < d) Tight error bounds ~ (Width)Pepth \:' — @
This is a deep lower bound.

> (n = d) Switching distributions ~ polylog(1/Error). [] — ¥

» (n > d) Trivial networks approximate normal by addition.



Increasing Uniform Noise (n < d = kn)
Networks going from Uniform [0, 1]" to [0, 1]*":

Depth
k—1

Optimal Error ~ (Width)_(

Upper Bound Proof: Space filling curve.
Lower Bound Proof: Affine piece counting.
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Normal <+ Uniform (n=d = 1)

Normal — Uniform: Upper Bound

Approximate the normal CDF with Taylor series.

+ + z/\—)

Size = polylog(1/Error).

=

Uniform — Normal: Upper Bound

Approximate the inverse CDF using binary search.

Normal CDF

M

Normal CDF

[}
Local variables for executing binary search

Size = polylog(1/Error).

Lower bounds

Size > log(1/Error) with more affine piece counting.



High Dimensional Uniform to Normal (n > d)

Summing independent uniform distributions approximates a normal.

VAN

AN

With a version of Berry-Esseen, we have:

Error ~ 1/1/Number of inputs.
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