Size-Noise Tradeoffs in Generative Networks

Bolton Bailey Matus Telgarsky

Univ. of Illinois Urbana-Champaign

November 29, 2018

Generative networks

Easy distribution $X \in \mathbb{R}^n$. Hard distribution $Y \in \mathbb{R}^d$. Generator Network $g: X \to Y$.

What can Y be?

Previous Work

- Universal approximation theorem:
 Shallow networks approximate continuous functions.
- "On the ability of neural nets to express distributions":
 Upper bounds for representability & shallow depth separation.

Our Contribution: Wasserstein Error Bounds

- (n < d) Tight error bounds \approx (Width) $\xrightarrow{\text{Depth}}$ \longrightarrow This is a *deep* lower bound.
- (n = d) Switching distributions $\approx \text{polylog}(1/\text{Error})$.
- ightharpoonup (n > d) Trivial networks approximate normal by addition.

Increasing Uniform Noise (n < d = kn)

Networks going from Uniform $[0,1]^n$ to $[0,1]^{kn}$:

Optimal Error
$$\approx \left(\mathsf{Width} \right)^{-\left(\frac{\mathsf{Depth}}{k-1} \right)}$$
 .

Upper Bound Proof: Space filling curve. Lower Bound Proof: Affine piece counting.

Normal \leftrightarrow Uniform (n = d = 1)

Normal → Uniform: Upper Bound

Approximate the normal CDF with Taylor series.

Uniform → **Normal**: **Upper Bound**

Approximate the inverse CDF using binary search.

 $\mathsf{Size} = \mathsf{polylog}(1/\mathsf{Error}).$

Lower bounds

Size > log(1/Error) with more affine piece counting.

High Dimensional Uniform to Normal (n > d)

Summing independent uniform distributions approximates a normal.

With a version of Berry-Esseen, we have:

Error $\approx 1/\sqrt{\text{Number of inputs}}$.

Poster 10:45 AM - 12:45 PM Room 210 & 230 AB #141