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Textual Information Network Embedding

Networks are ubiquitous, such as social networks (e.g., Twitter) or
citation networks of research papers (e.g., arXiv).
A textual information network is G = (V ,E ,T ), where
V = {vi}N

i=1 is the set of vertices, E = {ei ,j}N
i ,j=1 is the set of edges,

and T = {ti}N
i=1 is the set of texts associated with vertices.

Network embedding aims to learn a low-dimensional representation
v i ∈ Rd for vertex vi ∈ V .
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Motivation

Problem:
How to measure the complete level of connectivity between any two
texts in the graph?

Solutions:
We propose DMTE which captures the semantic relatedness between
texts by applying a diffusion-convolution operation on the text inputs.
We design a new objective that preserves high-order proximity, by
including a diffusion map in the conditional probability.
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Diffusion Process

P ∈ RN×N is the transition matrix, with pi ,j representing the
transition probability from vertex vi to vertex vj within one step.
We introduce the power series of P for the diffusion process.
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(b) Forth order diffusion graph.

Figure 2: (Left) Original graph only have connected edge e1,2, e1,3, e3,4 and e1,4. Here we plot it
as directed graph because we normalize the outgoing edges weight. (Right) Forth power diffusion
graph.

on the graph. Figure 2 gives an example of the smoothing effect of diffusion graph. This example only137

contains four nodes. The edges are normalized so the graph becomes directed. The original graph138

only have edge pair e1,2, e1,3, e3,4 and e1,4. However, the indirect relationship between other edge139

pairs are not considered. Diffusion graph can smoothing the whole graph with higher order. Thus140

those indirect relationships, like (n2, n4), can also be considered. As we can see from figure 2(b), the141

forth order diffusion graph becomes fully connected. When the order goes to infinity, it corresponds142

to the convergence point of a random walk.143

4.2 Text Embedding144

A word sequence t =< w1, · · · , w|t| > is mapped into a set of dt-dimensional real-valued vectors145

< w1, · · · ,w|t| > by looking up the word embedding matrix Ew. Here Ew ∈ R|w|×dt is randomly146

initialized and further learned during training and |w| is the vocabulary size of the dataset. We can147

obtain a simple text representation xi ∈ Rdt of vertice vi by taking the average of word vectors.148

Although the word order is not preserved in such representation, [5] has shown that word embedding149

average models can perform surprisingly well and avoid over-fitting efficiently in many NLP tasks.150

Given the fixed-length vectors of each text, the input texts can be represented by matrix X ∈ RN×dt151

where the i-th row is xi.152

x =
1

c

|t|∑

i=1

wi, X = x1 ⊕ x2 ⊕ · · · ⊕ xN .

However, in this text representation matrix each embedding is completely independent without153

leveraging the semantic relatedness indicated from the graph. To address this issue, we employ154

diffusion convolutional operator [1] to measure the level of connectivity between any of two texts in155

the netwrok.156

Let P∗ ∈ RN×H×N be a tensor containing H hops of power series of P, i.e., the concatenation of157

{P0,P1, · · · ,PH−1}. V∗t ∈ RN×H×d is the tensor version of text embedding represention after158

diffusion convolutional operation. The activation V
∗(i,j,k)
t for node i, hop j, and feature k is given by159

V
∗(i,j,k)
t = f(W(j,k) ·

N∑

n=1

P∗(i,j,n)X(n,k)) (2)

where W ∈ RH×d is the weight matrix and f is a non-linear differentiable function. The activations160

can be expressed equavalently using tensor notations.161

V∗t = f(W �P∗X) (3)

where � represents element-wise multiplication. This tensor representation considers all paths162

between two texts in the network and thus includes long-distance semantic relationship. With longer163

4

The diffusion map of vertex vi is u i , which maps from vertices and
their embeddings to the results of a diffusion process that begins at
vertex vi .
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Model

To incorporate both the structure and textual information of the network,
we adopt two types of embeddings v s

i and v t
i for each vertex vi .
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Figure: An illustration of our framework for textual network embedding.
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Model
Objective Function

Given the set of edges E , the goal of DMTE is to maximize the following
overall objective function:

L =
∑
e∈E

L(e) =
∑
e∈E

αttLtt(e) + αssLss(e) + αstLst(e) + αtsLts(e). (1)

The objective function consists of four parts which measure both the
structure and text embeddings.

Ltt(e) = si ,j log p(v t
i |v t

j ), Lss(e) = si ,j log p(v s
i |us

j ) (2)
Lst(e) = si ,j log p(v s

i |v t
j ), Lts(e) = si ,j log p(v t

i |us
j ) (3)
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Experiments

We achieve state-of-the-art results on two textual information
network embedding tasks: (i) link prediction, where we predict the
existence of an edge given a pair of vertices; and (ii) multi-label
classification, where we predict the labels of each text.
Case study:

Query: The K-D-B-Tree: A Search Structure For Large Multidimensional Dynamic Indexes.
1. The R+-Tree: A Dynamic Index for Multi-Dimensional Objects.
2. The SR-tree: An Index Structure for High-Dimensional Nearest Neighbor Queries.
3. Segment Indexes: Dynamic Indexing Techniques for Multi-Dimensional Interval Data.
4. Generalized Search Trees for Database Systems.
5. High Performance Clustering Based on the Similarity Join.

Table: Top-5 similar vertex search based on embeddings learned by DMTE.
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Abstract
Textual network embedding leverages rich text information associated with

the network to learn low-dimensional vectorial representations of vertices.
Rather than using typical natural language processing (NLP) approaches, re-
cent research exploits the relationship of texts on the same edge to graphically
embed text. However, these models neglect to measure the complete level of
connectivity between any two texts in the graph. We present diffusion maps for
textual network embedding (DMTE), integrating global structural information
of the graph to capture the semantic relatedness between texts, with a diffusion-
convolution operation applied on the text inputs. In addition, a new objective
function is designed to efficiently preserve the high-order proximity using the
graph diffusion. Experimental results show that the proposed approach outper-
forms state-of-the-art methods on the vertex-classification and link-prediction
tasks.

Problem Defination
Definition 1. A textual information network is G = (V,E, T ),
where V = {vi}i=1,··· ,N is the set of vertices, E = {ei,j}Ni,j=1 is the
set of edges, and T = {ti}i=1,··· ,N is the set of texts associated with
vertices. Each edge ei,j has a weight si,j representing the relationship
between vertices vi and vj. If vi and vj are not linked, si,j = 0. If there
exists an edge between vi and vj, si,j = 1 for an unweighted graph,
and si,j > 0 for a weighted graph. A path is a sequence of edges that
connect two vertices. The text of vertex vi, ti, is comprised of a word
sequence < w1, · · · , w|ti| >.

Definition 2. Let S ∈ RN×N be the adjacency matrix of a graph
whose entry si,j ≥ 0 is the weight of edge ei,j. The transition ma-
trix P ∈ RN×N is obtained by normalizing rows of S to sum to one,
with pi,j representing the transition probability from vertex vi to vertex
vj within one step. Then an h-step transition matrix can be computed
with P to the h-th power, i.e., Ph. The entry phi,j refers to the transition
probability from vertex vi to vertex vj within exactly h steps.

Definition 3. A network embedding aims to learn a low-dimensional
vector vi ∈ Rd for vertex vi ∈ V , where d � |V | is the dimension
of the embedding. The embedding matrix V for the complete graph
is the concatenation of {v1,v2, · · · ,vN}. The distance between ver-
tices on the graph and context similarity should be preserved in the
representation space.

Definition 4. The diffusion map of vertex vi is ui, the i-th row of
the diffusion embedding matrix U, which maps from vertices and their
embeddings to the results of a diffusion process that begins at vertex vi.
U is computed by U =

∑H−1
h=0 λhP

hV, where λh is the importance
coefficient that typically decreases as the value of h increases. The
high-order proximity in the network is preserved in diffusion maps.

Method
We employ a diffusion process to build long-distance semantic relat-
edness in text embeddings, and capture global structural information
in the objective function. To incorporate both the structure and textual
information of the network, we adopt two types of embeddings vsi and
vti for each vi vertex. In this work, vi is learned by an unsupervised
approach, and it can be used directly as a feature vector of vertex vi for
various tasks.
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Figure 1: An illustration of our framework for textual network embedding.

Diffusion Process
Initially the network only has a few active vertices, due to sparsity.
Through the diffusion process, information is delivered from active
vertices to inactive ones by filling information gaps between vertices;
vertices may be connected by indirect, multi-step paths. We introduce
the transition matrix P and its power series for the diffusion process.
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(b) Forth order diffusion graph.

Figure 2: (Left) Original graph only have connected edge e1,2, e1,3, e3,4 and e1,4. Here we plot it
as directed graph because we normalize the outgoing edges weight. (Right) Forth power diffusion
graph.

on the graph. Figure 2 gives an example of the smoothing effect of diffusion graph. This example only137
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obtain a simple text representation xi ∈ Rdt of vertice vi by taking the average of word vectors.148

Although the word order is not preserved in such representation, [5] has shown that word embedding149

average models can perform surprisingly well and avoid over-fitting efficiently in many NLP tasks.150

Given the fixed-length vectors of each text, the input texts can be represented by matrix X ∈ RN×dt151

where the i-th row is xi.152

x =
1

c

|t|∑

i=1

wi, X = x1 ⊕ x2 ⊕ · · · ⊕ xN .

However, in this text representation matrix each embedding is completely independent without153

leveraging the semantic relatedness indicated from the graph. To address this issue, we employ154

diffusion convolutional operator [1] to measure the level of connectivity between any of two texts in155

the netwrok.156

Let P∗ ∈ RN×H×N be a tensor containing H hops of power series of P, i.e., the concatenation of157

{P0,P1, · · · ,PH−1}. V∗t ∈ RN×H×d is the tensor version of text embedding represention after158

diffusion convolutional operation. The activation V
∗(i,j,k)
t for node i, hop j, and feature k is given by159

V
∗(i,j,k)
t = f(W(j,k) ·

N∑

n=1

P∗(i,j,n)X(n,k)) (2)

where W ∈ RH×d is the weight matrix and f is a non-linear differentiable function. The activations160

can be expressed equavalently using tensor notations.161

V∗t = f(W �P∗X) (3)

where � represents element-wise multiplication. This tensor representation considers all paths162

between two texts in the network and thus includes long-distance semantic relationship. With longer163

4

Figure 2: A simple example of diffusion process in a directed graph.

Text Embedding
A word sequence t =< w1, · · · , w|t| > is mapped into a set of dt-
dimensional real-valued vectors < w1, · · · ,w|t| > by looking up the
word embedding matrix Ew. We can obtain a simple text representa-
tion xi ∈ Rdt of vertex vi by taking the average of word vectors. The
input texts can be represented by matrix X ∈ RN×dt.

x =
1

|t|

|t|∑

i=1

wi, X = x1 ⊕ x2 ⊕ · · · ⊕ xN . (1)

Alternatively, we can use the bi-directional LSTM. Text inputs are rep-
resented by the mean of all hidden states.
−→
h i = LSTM(wi,hi−1),

←−
h i = LSTM(wi,hi+1) (2)

x =
1

|t|

|t|∑

i=1

(
−→
h i ⊕

←−
h i), X = x1 ⊕ x2 ⊕ · · · ⊕ xN . (3)

However, the above embeddings do not leverage the semantic related-
ness indicated from the graph. To address this issue, we employ the
diffusion convolutional operator to measure the level of connectivity
between any of two texts in the network.

Let P∗ ∈ RN×H×N be a tensor containing H hops of power series
of P, i.e., the concatenation of {P0,P1, · · · ,PH−1}. V∗t ∈ RN×H×d
is the tensor version of the text embedding representation, after the
diffusion convolutional operation.

V∗t = f (W �P∗X), (4)

where W ∈ RH×d is the weight matrix, f is a nonlinear differentiable
function, and � represents element-wise multiplication. With longer
paths discounted more than shorter paths, the text embedding matrix
Vt is given by

Vt =

H−1∑

h=0

λhV
∗(:,h,:)
t . (5)

Through the diffusion process, text representations, i.e., rows of Vt are
not embedded independently. With the whole graph being smoothed,
indirect relationships between texts that are not on the same edge can
be considered to learn embeddings.

Objective Function
Given the set of edges E, the goal of DMTE is to maximize the fol-
lowing overall objective function:

L =
∑

e∈E
L(e) =

∑

e∈E
αttLtt(e) + αssLss(e) + αstLst(e) + αtsLts(e).

(6)
The objective function consists of four parts, which measure both
the structure and text embeddings. Each part is to measure the log-
likelihood of generating vi conditioned on vj, where vi and vj are on
the same directed edge.

Ltt(e) = si,j log p(v
t
i|vtj) = si,j log

exp(vti · vtj)∑
vtk∈Vt

exp(vtk · vtj)
, (7)

Lss(e) = si,j log p(v
s
i |usj) = si,j log

exp(vsi · usj)∑
vsk∈Vs

exp(vsk · usj)
, (8)

Lst(e) = si,j log p(v
s
i |vtj) = si,j log

exp(vsi · vtj)∑
vsk∈Vs

exp(vsk · vtj)
, (9)

Lts(e) = si,j log p(v
t
i|usj) = si,j log

exp(vti · usj)∑
vtk∈Vt

exp(vtk · usj)
. (10)

Note that p(·|usj) computes the probability conditioned on the diffusion
map of vertex vj, and p(·|vtj) computes the probability conditioned on
the text embedding of vertex vj.

Experiments
We evaluate the proposed method for the multi-label classification and
link prediction tasks.
•Given a pair of vertices, link prediction seeks to predict the exis-

tence of an unobserved edge using the trained representations.
•Multi-label classification seeks to classify each vertex into a set of

labels using the learned vertex representation as features.

Dataset
• DBLP is a citation network that consists of 60744 papers in 4 research areas:

database, data mining, artificial intelligence, and computer vision. The network
has 52890 edges indicating the citation relationship between papers.
• Cora is a citation network that consists of 2277 machine learning papers in 7

classes and 5214 edges indicating the citation relationship between papers.
• Zhihu is a Q&A based community social network in China. In our experiments,
10000 active users are collected as vertices and 43894 edges. The description of
their interested topics are used as text information.

Results

Table 1: AUC scores for link prediction on Cora(top) and Zhihu(bottom).
% of edges 15% 25% 35% 45% 55% 65% 75% 85% 95%

Deep Walk 56.0 63.0 70.2 75.5 80.1 85.2 85.3 87.8 90.3
LINE 55.0 58.6 66.4 73.0 77.6 82.8 85.6 88.4 89.3
node2vec 55.9 62.4 66.1 75.0 78.7 81.6 85.9 87.3 88.2

TADW 86.6 88.2 90.2 90.8 90.0 93.0 91.0 93.4 92.7
TriDNR 85.9 88.6 90.5 91.2 91.3 92.4 93.0 93.6 93.7
CENE 72.1 86.5 84.6 88.1 89.4 89.2 93.9 95.0 95.9
CANE 86.8 91.5 92.2 93.9 94.6 94.9 95.6 96.6 97.7

DMTE (w/o diffusion) 87.4 91.2 92.0 93.2 93.9 94.6 95.5 95.9 96.7
DMTE (text only) 82.6 84.0 85.7 87.3 89.1 91.1 92.0 92.9 94.2
DMTE (Bi-LSTM) 86.3 88.2 90.7 92.7 94.1 94.8 96.0 97.3 98.1
DMTE (WAvg) 91.3 93.1 93.7 95.0 96.0 97.1 97.4 98.2 98.8

Deep Walk 56.6 58.1 60.1 60.0 61.8 61.9 63.3 63.7 67.8
LINE 52.3 55.9 59.9 60.9 64.3 66.0 67.7 69.3 71.1
node2vec 54.2 57.1 57.3 58.3 58.7 62.5 66.2 67.6 68.5

TADW 52.3 54.2 55.6 57.3 60.8 62.4 65.2 63.8 69.0
TriDNR 53.8 55.7 57.9 59.5 63.0 64.6 66.0 67.5 70.3
CENE 56.2 57.4 60.3 63.0 66.3 66.0 70.2 69.8 73.8
CANE 56.8 59.3 62.9 64.5 68.9 70.4 71.4 73.6 75.4

DMTE (w/o diffusion) 56.2 58.4 61.3 64.0 68.5 69.7 71.5 73.3 75.1
DMTE (text only) 55.9 57.2 58.8 61.6 65.3 67.6 69.5 71.0 74.1
DMTE (Bi-LSTM) 56.3 60.3 64.9 69.8 73.2 76.4 78.7 80.3 82.2
DMTE (WAvg) 58.4 63.2 67.5 71.6 74.0 76.7 78.5 79.8 81.5

Figure 3: Left: The link prediction results w.r.t. the number of hops H at different
training ratios. Right: F1-Macro scores for multi-label classification on DBLP.
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Table 2: Top-5 similar vertex search based on embeddings learned by DMTE.
Query: The K-D-B-Tree: A Search Structure For Large Multidimensional Dynamic Indexes.
1. The R+-Tree: A Dynamic Index for Multi-Dimensional Objects.
2. The SR-tree: An Index Structure for High-Dimensional Nearest Neighbor Queries.
3. Segment Indexes: Dynamic Indexing Techniques for Multi-Dimensional Interval Data.
4. Generalized Search Trees for Database Systems.
5. High Performance Clustering Based on the Similarity Join.

Conclusions

•We propose DMTE which integrates global structural information of
the graph to capture the level of connectivity between any two texts,
by applying a diffusion convolutional operation on the text inputs.

•We design a new objective that preserves high-order proximity, by
including a diffusion map in the conditional probability.

• Experimental results on the vertex-classification and link-prediction
tasks show the superiority of the proposed approach.
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