Point process latent variable models of larval zebrafish behavior

Anuj Sharma
Columbia University*

Robert E. Johnson
Harvard University

Florian Engert
Harvard University

Scott W. Linderman
Columbia University

^{*}Anuj is currently a research engineer at Imagen Technologies

Why larval zebrafish behavior?

To understand the computations of the nervous system, we need to understand its behavioral outputs.

Real recording of a freely behaving larval zebrafish

Key questions

Q1: How should we characterize types of swim bouts?

Key questions

Q1: How should we characterize types of swim bouts?

Q2: What dynamics govern how swim bouts are sequenced together over time?

Key questions

Q1: How should we characterize types of swim bouts?

Q2: What dynamics govern how swim bouts are sequenced together over time?

Q3: How are these dynamics modulated by internal states like hunger?

Modeling larval zebrafish behavior as a marked point process

Full Generative Model

clique

Full Generative Model

observed

clique

Full Generative Model

LSTM state

clique

Full Generative Model

Full Generative Model

Full Generative Model

Collapsed Generative Model

PPLVMs help answer key questions

A1: Bouts cluster into discrete types in low-d latent space.

A1': Held-out likelihood offers a quantitative metric for comparing representations.

PPLVMs help answer key questions

A1: Bouts cluster into discrete types in low-d latent space.

A1': Held-out likelihood offers a quantitative metric for comparing representations.

A2: Bout types follow characteristic transition patterns between hunting and exploring.

PPLVMs help answer key questions

A1: Bouts cluster into discrete types in low-d latent space.

A1': Held-out likelihood offers a quantitative metric for comparing representations.

A2: Bout types follow characteristic transition patterns between hunting and exploring.

A3: These transition patterns change over time as a function of hunger.

Come to our poster!

Extend our model to include

- Environmental dependencies (prey locations, sizes, dynamics)
- Whole brain neural activity dynamics

Apply PPLVMs to other domains:

- Healthcare
- Social media
- Consumer behavior

Ahrens et al (Nature Methods, 2013)

Acknowledgements: Misha Ahrens (video), John Cunningham, Kristian Herrera (animations), Liam Paninski, Haim Sopolinsky (video), SWL: Simons Foundation SCGB-418011; FE: National Institutes of Health's Brain Initiative U19NS104653, R24NS086601 and R43OD024879, Simons Foundation SCGB-542973 and 325207