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Why larval zebrafish behavior?

To understand the computations of the nervous system, we need 
to understand its behavioral outputs.








Real recording of a freely behaving larval zebrafish
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Key questions

Q1: How should we characterize types of swim bouts?

Q2: What dynamics govern how swim bouts are 
sequenced together over time?

Q3: How are these dynamics modulated by internal states 
like hunger?



Modeling larval zebrafish behavior as a 
marked point process
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PPLVMs help answer key questions
A1: Bouts cluster 
into discrete 
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latent space.

A1’: Held-out 
likelihood offers a 
quantitative 
metric for 
comparing 
representations.
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A3: These 
transition 
patterns change 
over time as a 
function of 
hunger.



Come to our poster!
Extend our model to include

• Environmental dependencies (prey 
locations, sizes, dynamics)

• Whole brain neural activity dynamics

Apply PPLVMs to other domains:

• Healthcare

• Social media

• Consumer behavior
Ahrens et al (Nature Methods, 2013)
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