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Why larval zebrafish behavior?

To understand the computations of the nervous system, we need
to understand its behavioral outputs.









Real recording of a freely behaving larval zebrafish
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Key questions

Q1: How should we characterize types of swim bouts?

Q2: What dynamics govern how swim bouts are
sequenced together over time?

Q3: How are these dynamics modulated by internal states
like hunger?



Modeling larval zebrafish behavior as a
marked point process
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Point process latent variable models

Full Generative Model
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Point process latent variable models

Full Generative Model
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Point process latent variable models

Full Generative Model Collapsed Generative Model
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Point process latent variable models

Bidirectional LSTM

Full Generative Model Collapsed Generative Model .y
Recognition Network
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PPLVMs help answer key questions
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PPLVMs help answer key questions

A1: Bouts cluster
Into discrete
types in low-d
latent space.

A2: Bout types
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PPLVMs help answer key questions

Inferred Clusters & Embedding
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A3: These
transition
patterns change
over time as a
function of
hunger.
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Come to our poster!

Extend our model to include

* Environmental dependencies (prey
locations, sizes, dynamics)

lateral view

 Whole brain neural activity dynamics . '
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Apply PPLVMs to other domains:

 Healthcare

e Social media

100 pym

« Consumer behavior

Ahrens et al (Nature Methods, 2013)
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