

Sparse Attentive Backtracking: Temporal credit assignment through reminding

Nan Rosemary Ke^{1,2}, Anirudh Goyal¹, Olexa Bilaniuk ¹, Jonathan Binas¹ Chris Pal^{2,4}, Mike Mozer ³, Yoshua Bengio^{1,5}

¹Mila, Université de Montréal

²Mila, Polytechnique Montreal

³University of Colorado, Boulder

⁴Element AI

⁵CIFAR Senior Fellow

Credit assignment

- Credit assignment: The correct division and attribution of blame to one's past actions in leading to a final outcome.
- Credit assignment in recurrent neural networks uses backpropgation through time (BPTT).
 - Detailed memory of all past events
 - Assign soft credit to almost all past events
 - · Diffusion of credit?

Credit assignment through time and memory

- Humans selectively recall memories that are relevant to the current behavior.
- Automatic reminding:
 - Triggered by contextual features.
 - Can serve a useful computation role in ongoing cognition.
 - Can be used for credit assignment to past events?
- Assign credit through only a few states, instead of all states:
 - Sparse, local credit assignment.
 - How to pick the states to assign credit to?

Sparse Attentive Backtracking

• Forward pass

• Backward pass

Some results

	Copying (T=100)		Copying (T=200)			Copying (T=300)					
	$k_{\rm trunc}$	k_{top}	acc.	CE_{10}	CE	acc.	CE_{10}	CE	acc.	CE_{10}	CE
LSTM	full BPTT		99.8	0.030	0.002	56.0	1.07	0.046	35.9	0.197	0.047
	full self-attn.		100.0	0.0008	0.0000	100.0	0.001	0.000	100.0	0.002	7.5e-5
	1	-	20.6	1.984	0.165				14.0	2.077	0.065
	5	_	31.0	1.737	0.145	17.1	2.03	0.092			
	10	-	29.6	1.772	0.148	20.2	1.98	0.090			
	20	-	30.5	1.714	0.143	35.8	1.61	0.073	25.7	1.848	0.197
	150	-	-	-	-	35.0	1.596	0.073	24.4	1.857	0.058
SAB	1	- 1	57.9	1.041	0.087	39.9	1.516	0.069	43.1	0.231	0.045
	1	5	100.0	0.001	0.000				89.1	0.383	0.012
	5	5	100.0	0.000	0.000	100.0	0.000	0.000	99.9	0.007	0.001
	10	10	100.0	0.000	0.001	100.0	0.000	0.000			

Table 2: Test accuracy and cross-entropy (CE) loss performance on the copying task with sequence lengths of T=100, 200, and 300. Accuracies are given in percent for the last 10 characters. CE_{10} corresponds to the CE loss on the last 10 characters. These results are with mental updates; Compare with Table 4 for without.

Image class.				pMNIST	CIFAR10	
	k_{trunc}	k_{top}	$k_{ m att}$	acc.	acc.	
M	full BI	PTT		90.3	58.3	
LSTM	300	-	-		51.3	
	20	5	20	89.8		
8	20	10	20	90.9		
SAB	50	10	50	94.2		
•	16	10	16		64.5	
Transformer (Vasvani'17)				97.9	62.2	

Table 4: Test accuracy for the permutated MNIST and CIFAR10 classification tasks.

Generalization and attention map

Generalization on longer sequences

Transfer Learning Results

Copy len. (T)	LSTM	LSTM +self-a.	SAB
100	99%	100%	99%
200	34%	52%	95%
300	25%	28%	83%
400	21%	20%	75%
2000	12%	OOM	47%
5000	12%		41%

Generalization test for models trained on copy task with T=100

ullet Learned attention over different timesteps during training Copy Task with T = 200

