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Gradient Descent: Effect of Step Size

Example

minx∈R (x2 + 1)(x− 1)2(x− 2)2

f(x)

x
x∗1 = 1 x∗2 = 2

From random initialization

• converges to x∗1 only if δ ≤ 0.5

• converges to x∗2 only if δ ≤ 0.2

If the algorithm converges with δ = 0.3, the solution is x∗1.
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Deep Linear Networks

x 7→ WLWL−1 · · ·W2W1x

• Cost function has infinitely many local minimum

• Different dynamic characteristics at different optima
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Lyapunov Stability of Gradient Descent
Deep Linear Networks

Proposition

• λ ∈ R and λ 6= 0

• λ is estimated as multiplication of scalar parameters {wi}

min
{wi}

1

2
(wL . . . w2w1 − λ)2 .

For convergence to {w∗i } with w∗L . . . w
∗
2w
∗
1 = λ, step size must satisfy

δ ≤ 2∑L
i=1

(
λ
w∗

i

)2 .
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Lyapunov Stability of Gradient Descent
Deep Linear Networks

• δ needs to be very small for equilibria with disproportionate {w∗i }

• For each δ, the algorithm can converge only to a subset of optima

• No finite Lipschitz constant for the gradient on the whole
parameter space
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Deep Linear Networks

Theorem

• {xi}i∈[N ] satisfies 1
N

∑N
i=1 xix

>
i = I

• R is estimated as multiplication of {Wj} by

min
{Wj}

1

2N

∑N

i=1
‖Rxi −WLWL−1 · · ·W2W1xi‖22

Assume the gradient descent algorithm with random initialization has
converged to R̂. Then,

ρ(R̂) ≤
(

2

Lδ

)L/(2L−2)
almost surely.

• Step size bounds the Lipschitz constant of the estimated function

• Contrary to ordinary-least-squares

Nar & Sastry Step Size Matters 6



Deep Linear Networks

Theorem

• {xi}i∈[N ] satisfies 1
N

∑N
i=1 xix

>
i = I

• R is estimated as multiplication of {Wj} by

min
{Wj}

1

2N

∑N

i=1
‖Rxi −WLWL−1 · · ·W2W1xi‖22

Assume the gradient descent algorithm with random initialization has
converged to R̂. Then,

ρ(R̂) ≤
(

2

Lδ

)L/(2L−2)
almost surely.

• Step size bounds the Lipschitz constant of the estimated function

• Contrary to ordinary-least-squares

Nar & Sastry Step Size Matters 6



Deep Linear Networks

Theorem

• {xi}i∈[N ] satisfies 1
N

∑N
i=1 xix

>
i = I

• R is estimated as multiplication of {Wj} by

min
{Wj}

1

2N

∑N

i=1
‖Rxi −WLWL−1 · · ·W2W1xi‖22

Assume the gradient descent algorithm with random initialization has
converged to R̂. Then,

ρ(R̂) ≤
(

2

Lδ

)L/(2L−2)
almost surely.

• Step size bounds the Lipschitz constant of the estimated function

• Contrary to ordinary-least-squares

Nar & Sastry Step Size Matters 6



Deep Linear Networks

Theorem

• {xi}i∈[N ] satisfies 1
N

∑N
i=1 xix

>
i = I

• R is estimated as multiplication of {Wj} by

min
{Wj}

1

2N

∑N

i=1
‖Rxi −WLWL−1 · · ·W2W1xi‖22

Assume the gradient descent algorithm with random initialization has
converged to R̂. Then,

ρ(R̂) ≤
(

2

Lδ

)L/(2L−2)
almost surely.

• Step size bounds the Lipschitz constant of the estimated function

• Contrary to ordinary-least-squares

Nar & Sastry Step Size Matters 6



Deep Linear Networks

Symmetric PSD matrices:

• The bound is tight with identity initialization

• Identity initialization allows convergence with the largest step size
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Nonlinear Networks Poster #8
Two-layer ReLU network:

x 7→ W (V x− b)+

Theorem

Let f : Rn → Rm be estimated by

min
W,V

1

2

∑N

i=1
‖W (V xi − b)+ − f(xi)‖22.

If the algorithm converges, then the estimate f̂(xi) satisfies

max
i∈[N ]

‖xi‖‖f̂(xi)‖ ≤
1

δ

almost surely.

Nar & Sastry Step Size Matters 8



Nonlinear Networks Poster #8
Two-layer ReLU network:

x 7→ W (V x− b)+

Theorem

Let f : Rn → Rm be estimated by

min
W,V

1

2

∑N

i=1
‖W (V xi − b)+ − f(xi)‖22.

If the algorithm converges, then the estimate f̂(xi) satisfies

max
i∈[N ]

‖xi‖‖f̂(xi)‖ ≤
1

δ

almost surely.

Nar & Sastry Step Size Matters 8



Nonlinear Networks Poster #8
Two-layer ReLU network:

x 7→ W (V x− b)+

Theorem

Let f : Rn → Rm be estimated by

min
W,V

1

2

∑N

i=1
‖W (V xi − b)+ − f(xi)‖22.

If the algorithm converges, then the estimate f̂(xi) satisfies

max
i∈[N ]

‖xi‖‖f̂(xi)‖ ≤
1

δ

almost surely.

Nar & Sastry Step Size Matters 8


