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Motivation: ML for Graphs

= Graph classification tasks:

= Molecule prediction o

= Classify molecule properties ~
(toxicity, drug-likeness etc.) =

= Social networks
= Predict social group properties
= Biological applications “
= Model disease pathways in PPl networks

= Physical systems <R
= Evolving dynamical systems \/
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Graph Pooling

Graph Neural Networks (GNNs) have
revolutionized machine learning with graphs

But GNNs learn individual node
representations and then simply globally
aggregate them:

= Mean/max/sum of all node embeddings (e.g.
structure2vec)

= Pool by sorting (e.g. DGCNN, PatchySan)

Problem: How to aggregate information in a
hierarchical way to capture the entire graph
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Pooling for GNNs

Problem: Learn a hierarchical pooling
strategy that respects graph structure

Our solution: DIFFPooOL

= | earns hierarchical pooling analogous to
CNNs

= Sets of nodes are pooled hierarchically

= Soft assignment of nodes to next-level
nodes
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DIFFPOOL Architecture

A different GNN is learned at every level of abstraction

Original Pooled network Pooled network Pooled network Graph
network at level 1 at level 2 at level 3 classification

Our approach: Use two sets of GNNs

= GNN1 to learn how to pool the network
= |earn cluster assignment matrix

= GNNZ2 to learn the node embeddings
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DIFFPOOL Architecture

Assuming general GNN model:
()
HY = M (A, HE=D, gk e, °
(1ys el o (141)
Concretely: ReLu(b}AD-tat-owe-ny X uat X
. AU

Two-tower architecture
70 = GNNyemnea(AD, X D) Embedding

S — softmax (GNNI,pOOI(A(I)J X(l))) ASSignment

Aggregate embedding via assignment to generate
next-level representations and adjacency
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Experimental Results

An average of 6.27% improvement in
accuracy for graph classification tasks
on biological and social networks

Data Set

Method
ENzYMES D&D REDDIT-MULTI-12K  COLLAB  PROTEINS Gain
PATCHYSAN - 76.27 41.32 72.60 75.00 4.17
GRAPHSAGE 54.25 75.42 42.24 68.25 70.48 -
ECC 53.50 74.10 41.73 67.79 72.65 0.11
7 SET2SET 60.15 78.12 43.49 7175 74.29 3.32
Z  SORrRTPOOL 57.12 79.37 41.82 73.76 75.54 3.39
© DIFFPOOL-DET 58.33 75.47 46.18 82.13 75.62 5.42
DIFFPOOL-NOLP 61.95 79.98 46.65 75.58 76.22 5.95
DIFFPOOL 62.53 80.64 47.08 75.48 76.25 6.27
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Experimental Results

DIFFPOOL learns reasonable pooling
architectures

Pooling at Layer 1 Pooling at Layer 2



Thank you!
Poster: AB #14

Code: https://github.com/RexYing/diffpool
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