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What are adversarial examples?

Adding small amount of well-crafted noise to the test data fools the classifier



More Questions than Answers

Intense ongoing research efforts, but we still don’t have a good understanding 
of many basic questions:

• What are the tradeoffs between the amount of data available, accuracy of 
the trained model, and vulnerability to adversarial examples?

• What properties of the geometry of a dataset make models trained on it 
vulnerable to adversarial attacks?
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small perturbations to data, and agrees with true labels.

• Robust Feature: A function from ℝ" → ℝ , that doesn’t change much with 
small perturbations to data, and agrees with true labels.

• The function is required to have sufficient variance across data points to 
preclude the trivial constant function.

• Disentangles the challenges of robustness and classification performance

• Train a classifier on top of robust features



Connections to Spectral Graph Theory
• Second eigenvector ! of the Laplacian of a graph is the solution to:

• Assigns values to vertices that change smoothly across neighbors

• Constraints ensure sufficient variance among these values
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Connections to Spectral Graph Theory

• Think of input data points as graph vertices with edges denoting some measure of 
similarity

• Can obtain robust features from the eigenvectors of Laplacian 

• Upper bound: Characterizes the robustness of features in terms of eigen values 
and spectral gap of the Laplacian

• Lower bound: Roughly says that if there exists a robust feature, the spectral 
approach would find it under certain conditions on the properties of Laplacian.



Illustration: Create a Graph

Create similarity graph according to a given distance metric 
[the same metric that we hope to be robust wrt]



Illustration: Extract Feature from 2nd eigenvector

f(xi) = v2 (xi) 



Takeaways

• Disentangling the two goals of robustness and classification 
performance may help us understand the extent to which a given 
dataset is vulnerable to adversarial attacks, and ultimately might help 
us develop better robust classifiers

• Interesting connections between spectral graph theory and 
adversarially robust features
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Thank you!


