Data-driven Clustering via Parameterized Lloyds Families

Travis Dick

Joint work with Maria-Florina Balcan and Colin White

Carnegie Mellon University

NeurIPS 2018

• Clustering aims to divide a dataset into self-similar clusters.

- Clustering aims to divide a dataset into self-similar clusters.
- Goal: find some unknown natural clustering.

- Clustering aims to divide a dataset into self-similar clusters.
- Goal: find some unknown natural clustering.

- Clustering aims to divide a dataset into self-similar clusters.
- Goal: find some unknown natural clustering.

- Clustering aims to divide a dataset into self-similar clusters.
- Goal: find some unknown natural clustering.

• However, most clustering algorithms minimize a clustering cost function.

- Clustering aims to divide a dataset into self-similar clusters.
- Goal: find some unknown natural clustering.

- However, most clustering algorithms minimize a clustering cost function.
- Hope that low-cost clusterings recover the natural clusters.

- Clustering aims to divide a dataset into self-similar clusters.
- Goal: find some unknown natural clustering.

- However, most clustering algorithms minimize a clustering cost function.
- Hope that low-cost clusterings recover the natural clusters.
- There are many algorithms and many objectives.

- Clustering aims to divide a dataset into self-similar clusters.
- Goal: find some unknown natural clustering.

- However, most clustering algorithms minimize a clustering cost function.
- Hope that low-cost clusterings recover the natural clusters.
- There are many algorithms and many objectives.

How do we choose the best algorithm for a specific application?

- Clustering aims to divide a dataset into self-similar clusters.
- Goal: find some unknown natural clustering.

- However, most clustering algorithms minimize a clustering cost function.
- Hope that low-cost clusterings recover the natural clusters.
- There are many algorithms and many objectives.

How do we choose the best algorithm for a specific application?

Can we automate this process?

• An unknown distribution \mathcal{P} over clustering instances.

- An unknown distribution \mathcal{P} over clustering instances.
- Given a sample $x_1, \ldots, x_n \sim \mathcal{P}$ annotated by their target clusterings.

- An unknown distribution \mathcal{P} over clustering instances.
- Given a sample $x_1, \ldots, x_n \sim \mathcal{P}$ annotated by their target clusterings.

• Find an algorithm \mathcal{A} that produces clusterings similar to the target clusterings.

- An unknown distribution \mathcal{P} over clustering instances.
- Given a sample $x_1, \ldots, x_n \sim \mathcal{P}$ annotated by their target clusterings.

- Find an algorithm \mathcal{A} that produces clusterings similar to the target clusterings.
- Want \mathcal{A} to also work well for new instances from \mathcal{P} !

- An unknown distribution \mathcal{P} over clustering instances.
- Given a sample $x_1, \ldots, x_n \sim \mathcal{P}$ annotated by their target clusterings.

- Find an algorithm \mathcal{A} that produces clusterings similar to the target clusterings.
- Want \mathcal{A} to also work well for new instances from \mathcal{P} !
- In this work:
 - 1. Introduce large parametric family of clustering algorithms, (α, β) -Lloyds.

- An unknown distribution \mathcal{P} over clustering instances.
- Given a sample $x_1, \ldots, x_n \sim \mathcal{P}$ annotated by their target clusterings.

- Find an algorithm \mathcal{A} that produces clusterings similar to the target clusterings.
- Want \mathcal{A} to also work well for new instances from \mathcal{P} !
- In this work:
 - 1. Introduce large parametric family of clustering algorithms, (α, β) -Lloyds.
 - 2. Efficient procedures for finding best parameters on a sample.

- An unknown distribution \mathcal{P} over clustering instances.
- Given a sample $x_1, \ldots, x_n \sim \mathcal{P}$ annotated by their target clusterings.

- Find an algorithm \mathcal{A} that produces clusterings similar to the target clusterings.
- Want \mathcal{A} to also work well for new instances from \mathcal{P} !
- In this work:
 - 1. Introduce large parametric family of clustering algorithms, (α, β) -Lloyds.
 - 2. Efficient procedures for finding best parameters on a sample.
 - 3. Generalization: optimal parameters on sample are nearly optimal on \mathcal{P} .

• Maintains k centers c_1, \ldots, c_k that define clusters.

- Maintains k centers c_1, \ldots, c_k that define clusters.
- Perform local search to improve the *k*-means cost of the centers.

- Maintains k centers c_1, \ldots, c_k that define clusters.
- Perform local search to improve the *k*-means cost of the centers.
 - 1. Assign each point to nearest center.

- Maintains k centers c_1, \ldots, c_k that define clusters.
- Perform local search to improve the *k*-means cost of the centers.
 - 1. Assign each point to nearest center.
 - 2. Update each center to be the mean of assigned points.

- Maintains k centers c_1, \ldots, c_k that define clusters.
- Perform local search to improve the *k*-means cost of the centers.
 - 1. Assign each point to nearest center.
 - 2. Update each center to be the mean of assigned points.
 - 3. Repeat until convergence.

- Maintains k centers c_1, \ldots, c_k that define clusters.
- Perform local search to improve the *k*-means cost of the centers.
 - 1. Assign each point to nearest center.
 - 2. Update each center to be the mean of assigned points.
 - 3. Repeat until convergence.

- Maintains k centers c_1, \ldots, c_k that define clusters.
- Perform local search to improve the *k*-means cost of the centers.
 - 1. Assign each point to nearest center.
 - 2. Update each center to be the mean of assigned points.
 - 3. Repeat until convergence.

- Maintains k centers c_1, \ldots, c_k that define clusters.
- Perform local search to improve the *k*-means cost of the centers.
 - 1. Assign each point to nearest center.
 - 2. Update each center to be the mean of assigned points.
 - 3. Repeat until convergence.

- Maintains k centers c_1, \ldots, c_k that define clusters.
- Perform local search to improve the *k*-means cost of the centers.
 - 1. Assign each point to nearest center.
 - 2. Update each center to be the mean of assigned points.
 - 3. Repeat until convergence.

- Maintains k centers c_1, \ldots, c_k that define clusters.
- Perform local search to improve the *k*-means cost of the centers.
 - 1. Assign each point to nearest center.
 - 2. Update each center to be the mean of assigned points.
 - 3. Repeat until convergence.

• Lloyd's method can get stuck if initial centers are chosen poorly

- Lloyd's method can get stuck if initial centers are chosen poorly
- Initialization is a well-studied problem with many proposed procedures (e.g., k-means++)

- Lloyd's method can get stuck if initial centers are chosen poorly
- Initialization is a well-studied problem with many proposed procedures (e.g., k-means++)
- Best method will depend on properties of the clustering instances.

Initialization: Parameter α

• Use d^{α} -sampling (generalizing d^2 -sampling of k-means++)

- Use d^{α} -sampling (generalizing d^2 -sampling of k-means++)
- Choose initial centers from dataset *S* randomly.

- Use d^{α} -sampling (generalizing d^2 -sampling of k-means++)
- Choose initial centers from dataset *S* randomly.
- Probability that point $x \in S$ is center c_i is proportional to $d(x, \{c_1, \dots, c_{i-1}\})^{\alpha}$.

- Use d^{α} -sampling (generalizing d^2 -sampling of k-means++)
- Choose initial centers from dataset *S* randomly.
- Probability that point $x \in S$ is center c_i is proportional to $d(x, \{c_1, \dots, c_{i-1}\})^{\alpha}$.
- $\alpha = 0$: random initialization

Initialization: Parameter α

- Use d^{α} -sampling (generalizing d^2 -sampling of k-means++)
- Choose initial centers from dataset *S* randomly.
- Probability that point $x \in S$ is center c_i is proportional to $d(x, \{c_1, \dots, c_{i-1}\})^{\alpha}$.

 $\alpha = 2: k$ -means++

 $\alpha = 0$: random initialization

Initialization: Parameter α

- Use d^{α} -sampling (generalizing d^2 -sampling of k-means++)
- Choose initial centers from dataset *S* randomly.
- Probability that point $x \in S$ is center c_i is proportional to $d(x, \{c_1, \dots, c_{i-1}\})^{\alpha}$.

Initialization: Parameter α

- Use d^{α} -sampling (generalizing d^2 -sampling of k-means++)
- Choose initial centers from dataset *S* randomly.
- Probability that point $x \in S$ is center c_i is proportional to $d(x, \{c_1, \dots, c_{i-1}\})^{\alpha}$.

Local search: Second parameter β tweaks the local search. Details in paper.

Initialization: Parameter *α*

- Use d^{α} -sampling (generalizing d^2 -sampling of k-means++)
- Choose initial centers from dataset *S* randomly.
- Probability that point $x \in S$ is center c_i is proportional to $d(x, \{c_1, \dots, c_{i-1}\})^{\alpha}$.

Local search: Second parameter β tweaks the local search. Details in paper.

Question: For a distribution \mathcal{P} over tasks, what parameters give best performance?

Results Efficient Tuning on Sample:

Efficient Tuning on Sample:

• Efficient algorithm for finding parameters on sample with best agreement to targets.

Efficient Tuning on Sample:

- Efficient algorithm for finding parameters on sample with best agreement to targets.
- "Algorithmically feasible to tune parameters on sample."

Efficient Tuning on Sample:

- Efficient algorithm for finding parameters on sample with best agreement to targets.
- "Algorithmically feasible to tune parameters on sample."

Generalization Guarantee:

Efficient Tuning on Sample:

- Efficient algorithm for finding parameters on sample with best agreement to targets.
- "Algorithmically feasible to tune parameters on sample."

Generalization Guarantee:

• Analyze the intrinsic complexity of (α, β) -Lloyds

Efficient Tuning on Sample:

- Efficient algorithm for finding parameters on sample with best agreement to targets.
- "Algorithmically feasible to tune parameters on sample."

Generalization Guarantee:

- Analyze the intrinsic complexity of (α, β) -Lloyds
- Show that need only roughly $\tilde{O}\left(\frac{k \log n}{\epsilon^2}\right)$ clustering instances to ensure empirical cost for all parameters within ϵ of expected cost.

Efficient Tuning on Sample:

- Efficient algorithm for finding parameters on sample with best agreement to targets.
- "Algorithmically feasible to tune parameters on sample."

Generalization Guarantee:

- Analyze the intrinsic complexity of (α, β) -Lloyds
- Show that need only roughly $\tilde{O}\left(\frac{k \log n}{\epsilon^2}\right)$ clustering instances to ensure empirical cost for all parameters within ϵ of expected cost.
- "Parameters tuned on the sample will work well for new instances!"

Efficient Tuning on Sample:

- Efficient algorithm for finding parameters on sample with best agreement to targets.
- "Algorithmically feasible to tune parameters on sample."

Generalization Guarantee:

- Analyze the intrinsic complexity of (α, β) -Lloyds
- Show that need only roughly $\tilde{O}\left(\frac{k \log n}{\epsilon^2}\right)$ clustering instances to ensure empirical cost for all parameters within ϵ of expected cost.
- "Parameters tuned on the sample will work well for new instances!"

Experiments: Evaluate (α, β) -Lloyds family on real and synthetic data.

