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Semantic Correspondence

• Establishing dense correspondences between semantically similar images, 
i.e., different instances within the same object or scene categories

• For example, the wheels of two different cars, the body of people or animals
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Introduction



Challenges in Semantic Correspondence
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Introduction

Photometric Deformations

• Intra-class appearance and 
attribute variations

• Etc.

Geometric Deformations

• Different viewpoint or baseline
• Non-rigid shape deformations
• Etc.

Lack of Supervision

• Labor-intensive of annotation
• Degraded by subjectivity
• Etc.

?



Objective

How to estimate locally-varying affine transformation fields
without ground-truth supervision?
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Problem Formulation

𝑖
𝐓𝑖 = 𝐀𝑖 , 𝐟𝑖

𝑖′ = T𝑖𝑖



Methods for Geometric Invariance in Feature Extraction Step

• UCN [Choy et al., NeurIPS’16]
• CAT-FCSS [Kim et al., TPAMI’18]
• Etc.
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Background

Spatial Transformer Networks 
(STNs)-based methods             
[Jaderberg et al., NeurIPS’15]
𝐀𝑖 is learned wo/𝐀𝑖

∗

But, 𝐟𝑖 is learned w/𝐟𝑖
∗

Geometric inference based on 
only source or target image



Methods for Geometric Invariance in Regularization Step

• GMat. [Rocco et al., CVPR’17]
• GMat. w/Inl. [Rocco et al., CVPR’18]
• Etc.
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Background

𝐓𝑖 is learned wo/𝐓𝑖
∗

using self- or meta-supervision
Geometric Inference using 
source/target images

Globally-varying geometric 
Inference only
Only fixed, untransformed 
versions of the features



Networks Configuration

• To weaves the advantages of STN-based methods and geometric 
matching methods by recursively estimating geometric transformation 
residuals using geometry-aligned feature activations
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Recurrent Transformer Networks (RTNs)



Feature Extraction Networks

• Input images 𝐼𝑠 and 𝐼𝑡 are passed through Siamese convolution networks with 
parameters 𝐖𝐹 such that 𝐷𝑖 = 𝐹 𝐼 𝐖𝐹

• Using CAT-FCSS, VGGNet (conv4-4), ResNet (conv4-23)
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Recurrent Transformer Networks (RTNs)



Recurrent Geometric Matching Networks

• Constraint correlation volume construction

𝐶(𝐷𝑖
𝑠, 𝐷𝑡(𝐓𝑗)) =< 𝐷𝑖

𝑠, 𝐷𝑡(𝐓𝑗) >/ < 𝐷𝑖
𝑠, 𝐷𝑡(𝐓𝑗) >

2
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Recurrent Transformer Networks (RTNs)

Source Target



Recurrent Geometric Matching Networks

• Recurrent geometric inference

𝐓𝑖
𝑘 − 𝐓𝑖

𝑘−1 = 𝐹(𝐶(𝐷𝑖
𝑠, 𝐷𝑡(𝐓𝑖

𝑘−1))|𝐖𝐺)
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Recurrent Transformer Networks (RTNs)

Source Target Iter. 1 Iter. 2 Iter. 3 Iter. 4



Weakly-supervised Learning
• Intuition:  matching score between the source 𝐷𝑠 at each pixel 𝑖 and the target 

𝐷𝑡(𝐓𝑖) should be maximized while keeping the scores of other candidates low

• Loss Function:

𝐿 𝐷𝑖
𝑠, 𝐷𝑡 𝐓 = − ෍

𝑗∈𝑀𝑖

𝑝𝑗
∗log(𝑝(𝐷𝑖

𝑠, 𝐷𝑡(𝐓𝑗)))

where the function 𝑝(𝐷𝑖
𝑠 , 𝐷𝑡(𝐓𝑗)) is a Softmax probability 

𝑝(𝐷𝑖
𝑠, 𝐷𝑡(𝐓𝑗)) =

exp(𝐶(𝐷𝑖
𝑠, 𝐷𝑡(𝐓𝑗)))

σ𝑙∈𝑀𝑖
exp(𝐶(𝐷𝑖

𝑠, 𝐷𝑡(𝐓𝑙)))

where 𝑝𝑗
∗ denotes a class label defined as 1 if 𝑗 = 𝑖, 0 otherwise
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Recurrent Transformer Networks (RTNs)



Results on the TSS Benchmark
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Experimental Results

Source 
images

Target 
images

SCNet
[Han et al., ICCV’17]

GMat. w/Inl. 
[Rocco et al., CVPR’18]

RTNs



Results on the PF-PASCAL Benchmark
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Results on the PF-PASCAL Benchmark
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Concluding Remarks
• RTNs learn to infer locally-varying geometric fields for semantic 

correspondence in an end-to-end and weakly-supervised fashion

• The key idea is to utilize and iteratively refine the transformations and 
convolutional activations through matching between the image pair 

• A technique is presented for weakly-supervised training of RTNs
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