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Interpretability

To use machine learning more responsibly.



Investigating
post-training interpretability methods.

Given a fixed model, find
the evidence of prediction.

Explanation|Model



Investigating
post-training interpretability methods.
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(e.g., neural network)
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Given a fixed model, find
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Why was this a Junco bird?



One of the most popular techniques:
Saliency maps
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Sanity check question.

A trained

(e.g., neural network)

== machine learning model = == p(Z)

Junco Bird-ness

The promise:
these pixels are the
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Sanity check question.

A trained

== machine learning model = == p(Z)

(e.g., neural network)
Junco Bird-ness

The promise:
these pixels are the

If so, when prediction changes, g evidence of
the explanation should change. ﬁ’# it rediction.
Wi pregiction,

Extreme case:
If prediction is random,
the explanation should
REALLY change.



Sanity check:
When prediction changes, do explanations change?

Original Image Salier:cy map
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Sanity check:
When prediction changes, do explanations change?

Original Image Salier:cy map
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Sanity check:
When prediction changes, do explanations change?
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Sanity check:

When prediction changes, do explanations change?

Original Image
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Sanity check:
When prediction changes, do explanations change?

No!

Cascading randomization

Original Image from top to bottom layers
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Sanity check2:
Networks trained with true and random labels,
Do explanations deliver different messages?

No!
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Conclusion

® Confirmation bias: Just because it “makes sense” to humans,
doesn’t mean it reflects the evidence for prediction.

® Do sanity checks for your interpretability methods!
(e.g., TCAV [K. et al "18])

oD

® Others who independently reached the same conclusions:
[Nie, Zhang, Patel "18] [Ulyanov, Vedaldi, Lempitsky "18]

® Some of these methods have been shown to be useful for humans.
Why? More studies needed.




