NeurlPS

Synthesized Policies
for Transfer and Adaptation across

_ e N

Hexiang Hu*, Liyu Chen®*, Boging Gong, Fei Sha

NETFLIX

Tasks and Environments

.

i

USC Viterbi

School of Engineering



Transfer Learning in RL

In this work we
decompose
environments and
tasks, and consider
three progressively
more difficult
transfer settings
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A good household robot needs to
complete multiple tasks
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Transfer Learning in RL

In this work we
decompose
environments and
tasks, and consider
three progressively
more difficult
transfer settings

B’s home

A good household robot needs to
complete multiple tasks in multiple
environments
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Transfer Settings 2 & 3
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* Transfer to a seen environment and unseen task, or unseen
environment and seen task, or unseen environment and unseen task
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Our Method

Action Set A
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“Move Left”,
“Move Right”,...)
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Extract State-Action Features

State, action features and policy basis are
learned across all seen (env, task) comb.
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Environment and task embeddings are learned

OU r Mel'hod via training on corresponding combinations.
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Both components are then used to compute

OUI" Mel'hod state action compatibility score.
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A disentanglement objective is used as auxiliary

OUI' Methd loss term
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Experimental Setup

We experiment our approach on two different simulators, with many
different map and many tasks (of finding objects sequentially)

GridWorld: 20 maps 20 tasks (144 SEEN & 256 UNSEEN)
THOR: 19 scenes 21 tasks (144 SEEN & 199 UNSEEN)
GridWorld Simulator Thor [1]
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Experimental Results (Setting 1)

Performances on GridWorld
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Table 3: Performance of each method on THOR (SEEN/UNSEEN=144/199)
Method | ModuleNet MLP MTL | SyNPoO
AvgSR. (SEEN) 51.5 % 47.5% 52.2% 55.6%
AvgSR. (UNSEEN) 14.4 % 25.8% 33.3% 35.4% USC Viterbi
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Experimental Results (Setting 2 and 3)

 On P Set: We train policies basis and t N tasks
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Table 2: Performance of transfer learning in the settings 2 and 3 on GRIDWORLD
Setting  Method | Cross Pair (Q's &, P’s 7) | Cross Pair (P's s, Q’s 7) | Q Pairs
Setimgs  MLP | 13.8% " 20.7% ~ 6.3%
P8 < synPo | 50.5 % ; 21.5% | 13.5%
ey P 14.6% | 18.3% "~ 7.2%
SEHINE 2 SynPo | 42.7% | 19.4% ' 129%  USC Viterbi
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