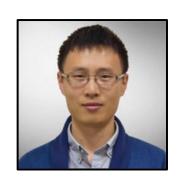
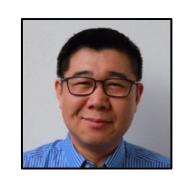


Synthesized Policies for Transfer and Adaptation across Tasks and Environments





Hexiang Hu*, Liyu Chen*, Boqing Gong, Fei Sha

Transfer Learning in RL

mop the floor

wash dishes

cooking

A good household robot needs to complete multiple tasks

In this work we decompose environments and tasks, and consider three progressively more difficult transfer settings

Transfer Learning in RL

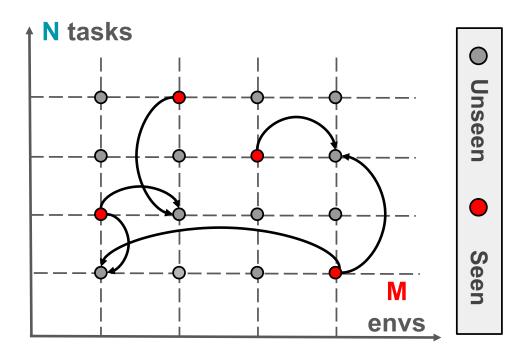
B's home

C's home

A good household robot needs to complete multiple tasks in multiple environments

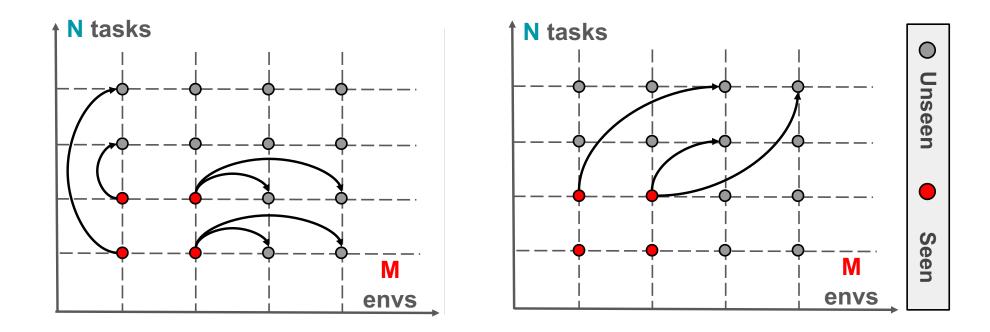
In this work we decompose environments and tasks, and consider three progressively more difficult transfer settings

Transfer Settings I



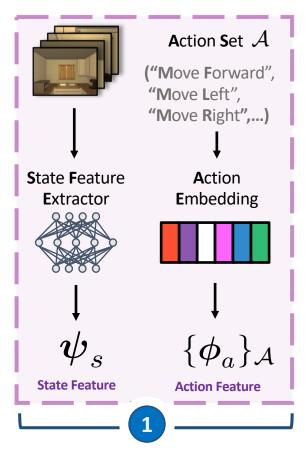
 Transfer to a new (env, task) pair, with seen environment and seen task

Transfer Settings 2 & 3



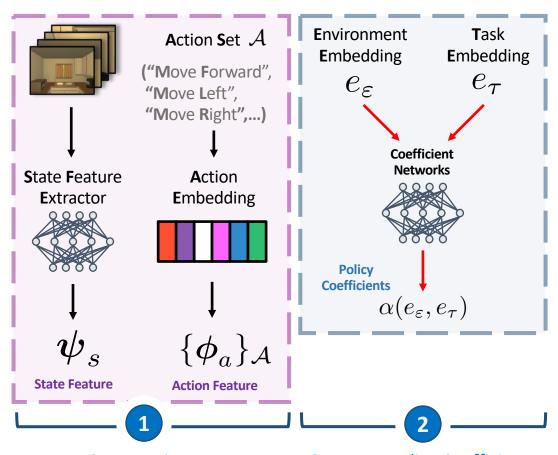
• Transfer to a seen environment and unseen task, or unseen environment and seen task, or unseen task

State, action features and policy basis are learned across all seen (env, task) comb.



Extract State-Action Features

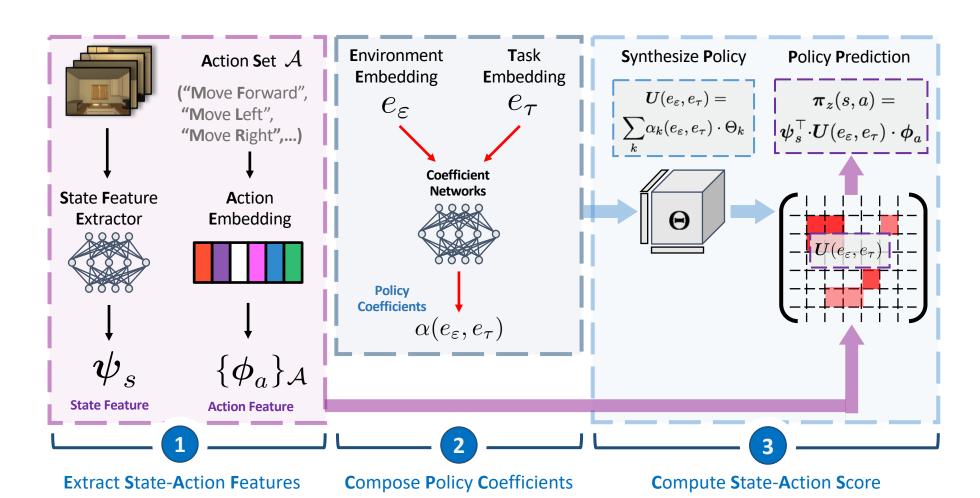
Environment and task embeddings are learned via training on corresponding combinations.



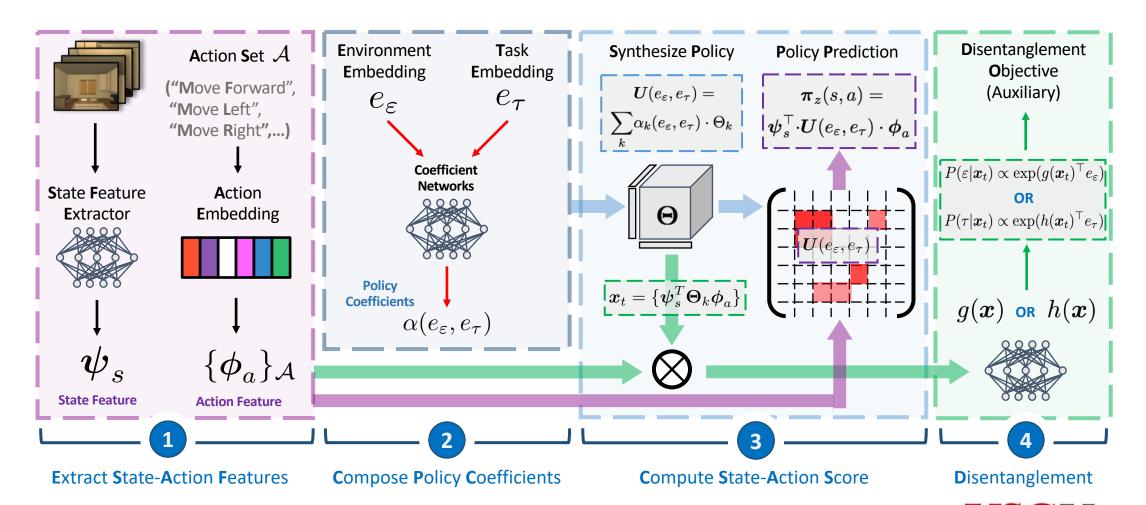
Extract **S**tate-**A**ction **F**eatures

Compose Policy Coefficients

Both components are then used to compute state action compatibility score.



A disentanglement objective is used as auxiliary loss term



Experimental Setup

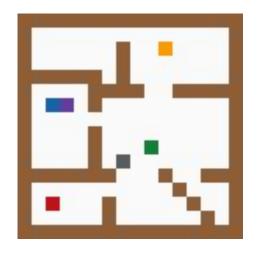
We experiment our approach on two different simulators, with many

different map and many tasks (of finding objects sequentially)

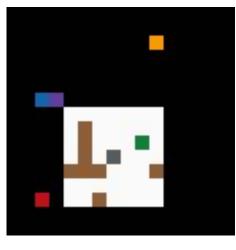
GridWorld: 20 maps 20 tasks (144 SEEN & 256 UNSEEN)

THOR: 19 scenes 21 tasks (144 SEEN & 199 UNSEEN)

GridWorld Simulator



World



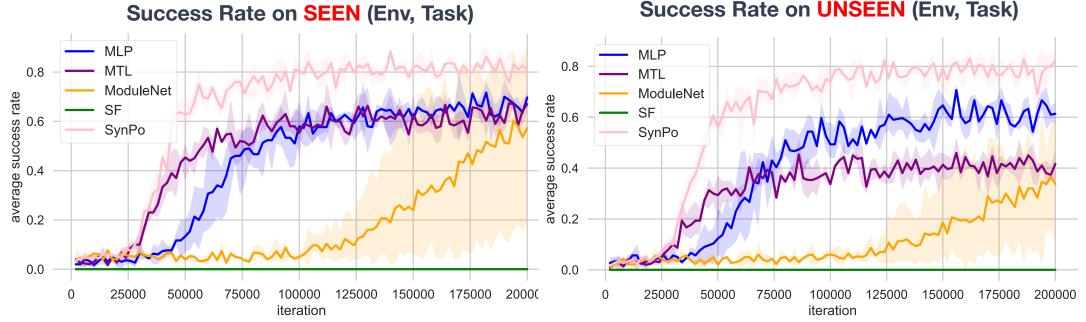
Agent's View

Thor [1]

Agent's View

Experimental Results (Setting 1)

Performances on GridWorld



Performances on THOR[1]

Table 3: Performance of each method on THOR (SEEN/UNSEEN=144/199)

Method	ModuleNet	MLP	MTL	SYNPO
AvgSR. (SEEN)	51.5 %	47.5%	52.2%	55.6%
AvgSR. (UNSEEN)	14.4 %	25.8%	33.3%	35.4%

Experimental Results (Setting 2 and 3)

- On P Set: We train policies basis and embeddings for P's task, env
- Setting 2: We incrementally learn new task, environment embeddings, on purple sets
- Setting 3: We directly learn new task, environment embeddings on Q set

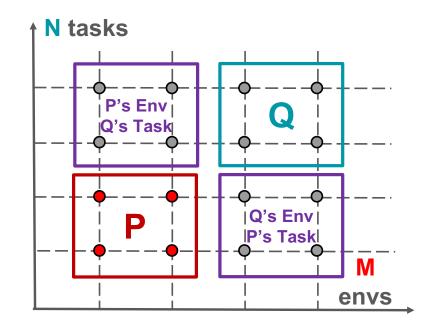


Table 2: Performance of transfer learning in the settings 2 and 3 on GRIDWORLD

Setting	Method	Cross Pair (Q's ε , P's τ)	Cross Pair (P's ε , Q's τ)	Q Pairs	
Setting 2 MLP		13.8%	20.7%	6.3%	
SYNPo		50.5 %	21.5%	13.5%	
Setting 3	MLP	14.6%	18.3%	7.2%	
	SynPo	42.7 %	19.4%	12.9%	

Thank You!

Come to our poster (#155) for more details

(Wed Dec 5th 10:45 AM - 12:45 PM @ Room 210 & 230 AB #155)

