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- Data and Matrix compression

- De-noising and Dimensionality Reduction

- Applications to Clustering, Topic Modelling, Recommendation
Systems and Distribution Learning.



Low-Rank Approximation

Given a n x n matrix A and an integer k, compute

Ay = m|n ||A X||¢

rank(X
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Distance Matrix

1. Let P = {p1,p2,...pn} be a set of n points in R?
2. Let A be the resulting n x n pair-wise Distance Matrix, i.e.

lpr=pal - - llpr—pall

lpn — pall lpn — Pall

N

3. Ais a dense matrix and has O(n?) non-zero entries
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Singular Value Decomposition

1. Decompose A into UDV' such that U has orthonormal columns,
V has orthonormal rows and D is a diagonal matrix

2. Truncate D to it's top k entries

3. Optimal!
4. Running time is O(n?)

5. Extremely slow for a large dataset



Input Sparsity Low Rank Approximation

Clarkson-Woodruff showed how to output a rank k matrix B such that

A—BJ|lZ< (1 min  ||A — X||?
IA=BIE < (1+¢) min_ 1A= X}

1. Running time is O (n? + n poly (£))



Input Sparsity Low Rank Approximation

Clarkson-Woodruff showed how to output a rank k matrix B such that

1A~ BJ|f < (1+€)EFT1'n 1A = XI7

1. Running time is O (n? + n poly (£))
2. Might still be too slow



Can we leverage the structure of
a Distance Matrix to get faster
algorithms?



Sublinear Low Rank Approximation

Theorem : Compute U € R™** V € RF*" such that

A=WV < min_ 1A~ XIE+ clAl

in time 0 (n"%" poly ()

1. Does not read most of the input!



Sublinear Low Rank Approximation

Theorem : Compute U € R™** V € RF*" such that

A=WV < min_ 1A~ XIE+ clAl

in time 0 (n"%" poly ()

1. Does not read most of the input!

2. Only accesses O (n'%°" poly (£)) entries in A



Running Time Comparison

Algorithm Running Time
Singular Value Decomposition o(n?)
Input Sparsity Low-Rank Approximation | O (n? + n poly (£))
Sublinear Low-Rank Approximation 0 (n"" poly (%))




Experiments: Running Time

Algorithm Clustering | MNIST

Singular Value Decomposition 398.76 398.50
Input Sparsity Low-Rank Approximation 8.94 34.32
Sublinear Low-Rank Approximation 1.69 416




Experiments: Absolute Error

Synthetic Clustering Dataset MNIST Dataset
Eucliggan Distance Euclidﬁan Distance
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Figure 1: We plot ||A — BJ|r on a synthetic dataset with 20 clusters and the
MNIST dataset using ¢, as the metric. We compare the error achieved by SVD
(optimal), our Sublinear Algorithm and the Input Sparsity Algorithm.



Thank You!




	Can we leverage the structure of a Distance Matrix to get faster algorithms?
	Thank You!

