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Goal:

“Minimax” learning

find the hypothesis minimizing the worst-case risk
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... I'(P, 0)is an ambiguity set representing uncertainty, e.q.

- domain drift ( mismatch of training & test distribution)
- adversarial attack ( enhancing robustness of hypothesis )
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Question: what is the speed of convergence

P, f) — inf R, (P ? ; :
Ro(P, f) — inf Ro(P, ) =0 S

Focus on 1-Wasserstein ambiguity ball! .
L(Po)={Q : Wi(P,Q) <o} o '

(we have results for p-Wasserstein balls, too! See Poster#86)
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(3) gauge the complexity of the “set of all possible ¥y, ¢”

With high probability,

Ro(P,f) — inf Ry(P, ) = O (COmple>ii/1;%r(\I! N ;))




Theorem) Under mild assumptions, with high probability,

Ry(P,F) -~ 1 Ry(P, ) = 0 () o (1)

- vanishes to 0 as the sample size grows.

- does not require Lipschitz-type assumptions on f

- similar procedure could be applied for any ambiguity set
with suitable dual form

Come to poster #86 for...

- applications to domain adaptation

- complementary generalization bound recovering
classic bound as p — 0

- Results on p-Wasserstein balls



