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Generalization bounds
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Uniform stability [Bousquet,Elisseeff ‘02]
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Examples:
o Strongly convex ERM [BE ‘02; Shalev-Shwartz,Shamir,Srebro,Sridharan ‘09]

« Gradient descent on convex smooth losses [Hardt,Recht,Singer “16]

Typical y = 1/+/n



From stability to generalization

For ¢ with range [0,1] and A with uniform stability y € E 1]
[Rogers,Wagner ‘78]
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Comparison
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Second moment
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Second moment
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There 1s more ....

 New proof fechnigue
« Applications to stochastic convex optimization
« Connections to learning with differential privacy




