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Anomaly detection

Identify instances that deviate from some systematic pattern
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A density sublevel view

Suppose our data distribution P has density p = g—ﬁ

Anomalies are instances with low density relative to uniform Q

Classify data against background (Steinwart & Scovel, '05)



A classification view
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A classification view
Pick density threshold o > 0, and classify data P vs background Q:

minE lcs(+1,f;¢) +E les(—1,f;
; E les(+1.f3¢) ch( fic)

for cost-sensitive loss {cs with cost-ratio ¢ = a/(1 + «)

Appealing, but with limitations:

Issue Resolution

Need sampling for Igf(x) = [ f(x)dO(x) A kernel trick

Scale of o — scale of p(-) Pinball loss
Doesn’t yield confidence scores Capped proper loss
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Capped proper losses

Intuitively, confidence scores are o< p(-)~!

To obtain a single sublevel set of p(-), use

rr}inlgf(-l-l,f)JrIQEg(*laf)

L(y.f) = Les(y.fic)

xNo confidences



Capped proper losses

Intuitively, confidence scores are o< p(-)~!

To obtain all sublevel sets of p(-), use

minkg £(+1,f)+1513(—1,f)

Ly.f) = /01W(C) ~Les(y,fic)de

for positive weight function w; yields proper losses

p(x)

v Confidences for all instances



Capped proper losses

Intuitively, confidence scores are o< p(-)~!

To obtain tail sublevel sets of p(-), use

min g £(+1,f)+156(—1,f)

1
.f) = /0 e < co] -w(c) - Les (v, fic) de

for positive weight function w; yields capped proper losses

p(z)

v Confidences for anomalous instances
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Capped proper losses

Focussing on the tail sublevel sets results in capping the loss

U(+1,f) =L(+1,f A ) U(=1,f)=4(-1,f )

An admissible example is

ML) =la~fl.  A-1H)=5(Frap
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Quantile control

One can remove cap on ¢(—1,-), yielding e.g.
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Quantile control

One can remove cap on ¢(—1,-), yielding e.g.

1
minE [ —f (X)) + 5 -Ef(X)*

for fixed density threshold o >0

Can learn o: for anomaly fraction v € (0,1), find

. 1
min [0 —f (X))} + 5 EfX)—v-o,

@ last term arises from pinball loss
@ o* will be the vth quantile of /*(X)
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The background loss can be written

min [ — (0] + 5 B2 -v-a

Suppose we commit to using kernelised f:

1 2 Y 2
feg“{"o?eRI,@ [ —f(X)]+ §'|V||L2(Q)+§'|lf|\}c_v'a



A (different) kernel trick

The background loss can be written

min [ — (0] + 5 B2 -v-a
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Suppose we commit to using kernelised f:

. 1 2 Y 2
feﬂn-fl,lgclERIg [a—f(X)]++ 3 1z, 0+ 3 Ifll5¢—v-a

Observed in point processes (McCullagh and Mgller, '06) that

F11Z ,0) + 7+ IIF1I5¢ = Ilflli‘}c(%g)
for some modified RKHS H(y,0)



Drop by poster #766!

We propose to minimise, for proper loss /,

i B 6GH1F00 — 0+ 1,0+ 5 i)~ V- 041,00
This gives a framework for anomaly detection which:

@ avoids sampling for background O
@ provides quantile control
@ yields calibrated confidence scores

See paper for experiments
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