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Imitation Learning

- A Markov decision process (MDP) (S, A, P(s'|s,a), Z&=a))
without cost

« Apolicy 7(als)
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Imitation Learning

- A Markov decision process (MDP) (S, A, P(s'|s,a), Z&=a))
: without cost
« Apolicy 7(als)
* |nstead, thereis a set of expert's demonstrations:
{(s1,a1,...,57)} ~ 7E(als)

* Learna policy that mimics wg(als) well.
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Generative Adversarial Imitation Learning (GAIL)

 Use generative adversarial networks (GANs) for imitation
learning:

Zlog(l — D(s¢,0a¢))

t=1

1. Sample trajectories by usingw(a|s) andmg(als)(expert demonstrations).
2. Train discriminator.

3. Update policy m(a|s) by using reinforcement learning (RL), e.g., TRPO,
PPO.
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Generative Adversarial Imitation Learning (GAIL)

| don't want to
« Sample-efficiency issues

 QObtaining trajectory samples from the environment is often very costly,
e.g., physical robots in a real world.

 GAILrequires model-free RL inner loops.
 The environment simulation is required.
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Generative Adversarial Imitation Learning (GAIL)

| don't want to

 GAILrequires model-free RL inner loops. move a lot..
 The environment simulation is required. X

« Sample-efficiency issues

 QObtaining trajectory samples from the environment is often very costly,
e.g., physical robots in a real world.

 Motivation

 Foreach iteration, the discriminator is updated by using minibatches.

« How about using Bayesian classification to train discriminator?
 Expected to make more refined cost function for imitation learning!
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Bayesian Framework for GAIL

 Probabilistic model for trajectories

« Foreach trajectories 7 = (s1, a1, S2,a2, ..., S7,ar), asequence of
state-action pairs satisfies Markov property:

p(s1,a1) = p(s1)m(a1]s1),

p(8t+1, at—|—1’5t7 &t) = PT(St—H’Sta CLt)W(CLt+1’St+1)

z=(s,a)

trajectory e @ oo} :@




Bayesian Framework for GAIL

 Probabilistic model for trajectories

« Foreach trajectories 7 = (s1,a1, S2,a2, ...,St,ar),asequence of
state-action pairs satisfies Markov property:

p(s1,a1) = p(s1)m(a1]s1),

P(St+1, at—|—1’5t7 at) = PT<3t—|—1|3ta at)ﬂ(at+1’8t+1)

e Two policies: agent's policy mg(als), expert's policy mg(als)

z = (s,a)
tfgentls @ @ 22l o 2E eX‘pert’S
ajectory trajectory
A B
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Bayesian Framework for GAIL

e Role of discriminator

« The probability that models whether (s,a) comes from the expert(o = 1)

or the agent (o = 0)

~ J1-=Dy(z), ifo=1,

trajectory discriminator
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z = (s,a)



Bayesian Framework for GAIL

« Posterior distributions
e Posterior for discriminator (conditioned on perfect trajectory discrimination)
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Bayesian Framework for GAIL

« Posterior distributions
e Posterior for discriminator (conditioned on perfect trajectory discrimination)

i Y i Y i Y i i i Y i 5 &

GAIL uses maximum likelihood estimation (MLE)
for both policy and discriminator updates!

e Posterior for policy (conditioned on preventing perfect discrimination)




Bayesian GAIL: GAIL with Posterior-Predictive Cost

« The objectiveis i

reinforcement osterior-predictive
. argmax E,, ZEPPOS%MOTW) log Dy (5¢, at) P P
learning 0 =1 cost
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Bayesian GAIL: GAIL with Posterior-Predictive Cost

« The objectiveis i

reinforcement osterior-predictive
. argmax K., Z Ep o ostorion(¢) 108 D (8¢, at) P P
learning 0 =1 cost

 Learning Curve for 5 MuJdoCo tasks!
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Bayesian GAIL: GAIL with Posterior-Predictive Cost
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For more information, please come to our poster session!

Wed Dec 5th 5-7 PM @ Room 210 & 230 AB #129

Thanks! B
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