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Bayesian optimization

Goal:

x* =argmax f(x)
xeX

Challenges:

» fis expensive to evaluate

» fis multi-peak

* no gradient information
 evaluations can be noisy
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2 prior f ~ GP(u, k)
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Bayesian optimization
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Bayesian optimization
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Bayesian optimization with an unknown GP prior
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Bayesian optimization with an unknown GP prior

data collected on f

»
prior model
et Our problem setup:
EREEEERE S matl use past experience with similar
N functions as the meta training data to
pbreak the circular dependencies




Meta Bayesian optimization with an unknown GP prior
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Meta Bayesian optimization with an unknown GP prior

-stimate the GP prior from offline data
sampled from the same prior
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Meta Bayesian optimization with an unknown GP prior

—stimate the GP prior from oftline data Construct unbiased estimators of the
sampled from the same prior posterior and use a variant of GP-UCB

Offline phase Online phase

— j(x) fi(z) = — () fuo(x) =

Estimated prior

A\

i,k




Meta Bayesian optimization with an unknown GP prior

—stimate the GP prior from oftline data Construct unbiased estimators of the
sampled from the same prior posterior and use a variant of GP-UCB

Offline phase Online phase

— j(x) fi(z) = — () fu(x) =

Estimated prior

A\

i,k




Meta Bayesian optimization with an unknown GP prior
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Meta Bayesian optimization with an unknown GP prior

—stimate the GP prior from oftline data Construct unbiased estimators of the
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Effect of N, the number of meta training functions

10

N = 1000
— ﬂt(ﬂf) /lt(il?') = Ct+1\//;‘t(97)
00 025 050 075  1.00

X

10

N =100
EE— /lt(a?') ﬂt(@ = <t+1\/ift(x)
i \/
00 025 050 075  1.00
£z



Bounding the regret of meta BO with an unknown GP prior
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| Theorem (finite input space) Results for continuous

Important assumptions:
- meta-training functions come from the same prior
e enough number of meta-training functions N 2 T+ 20

Given T observations on the test function f, with high probability,
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Empirical results on block picking and placing
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Regret bounds for meta Bayesian optimization
with an unknown Gaussian process prior
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More results on:

» estimation details for discrete and continuous input spaces
* regret bounds for compact input space in R?

* regret bounds for probability of improvement in the meta learning setting
» empirical results on robotics tasks

https://ziw.mit.edu/meta_bo



