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We consider the following non-convex problem:
minimize  f(x) = 1 Z fi(x) (**)
x€ERd n ey
Study both finite-sum case (n is finite) and online case (n is c0).
e c-approximate first-order stationary point, or simply an FSP, if

VAR < e (0.1)

e (e, d)-approximate second-order stationary point, or simply an SSP, if

IVFC < e, Amn (V2F(4) > ~O(VE) (0.2)
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Comparison of Existing Methods

Algorithm Online Finite-Sum
GD / SGD (Nesterov,2004) e ! ne 2
First-order (Allen-Zhu, Hazan, 2016)
Stati SVRG / SCSG (Reddi et al., 2016) g 333 n+ n?/3:2
tationary .
Point (Lei et al., 2017)
SNVRG (Zhou et al., 2018) 3 n+n/%?
SPIDER-SFO (this work) g3 n+n/%c? 8

Ge et al.,2015)

NEON+FastCubic/CDHS ~ (Carmon et al.,2016) 38 ne”tS 4 p¥4emLTs
Tripuraneni et al.,2017)
Allen-Zhu, 2017)

Xu et al., 2017)
Allen-Zhu, Li, 2015)

SPIDER-SFO™ (this work) e 3 n'2e=% (n>e7Y)

NEON+Natasha2 ne~ S 4 p2/3c72

Perturbed GD / SGD EJin et al. 2017b) poly(d)e~* ne?

Second-order | NEON+GD (Xu et al.,2017) 4 2
Stationary / NEON+SGD (Allen-zhu, Li,2017b) - ne
Point AGD (Jin et al.,2017b) N/A ne 17

(Allen-Zhu, Hazan, 2016) _35
(Hessian- NEIO_N*S\QE(;G (Reddi et al.2016) © o ne™l 4 p?3e2
Lipschitz / NEON+ (Lei et al.,2017) =
Required) (Agarwal et al.,2017)
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Example: Algorithm for Searching FSP in Expectation

Algorithm 1 SPIDER-SFO in Expectation: Input x°, ¢, Sy, Sa, ng, € (For a finding FSP)
1: for k=0 to K do

2: if mod (k,q) =0 then

3: Draw S; samples (or compute the full gradient for the finite-sum case), vF = V fs, (x*)
4:  else

5: Draw Ss samples, and let vF = V fs, (x*) — V fs, (x*1) + vF~1

6: end if

. k1 _ ok kok ko oo 13 1
X =X n*v* where 7" = min (LTLUHVkH s 2Lnn)
8: end for

9: Return x chosen uniformly at random from {xk}ﬁ:ol

e We prove the stochastic gradient costs to find an approximate FSP is both
upper and lower bounded by O(nl/ze_Z) under certain conditions

e A similar complexity has also been obtain by Zhou et al., (2018)



Stochastic Path-Integrated Differential Estimator: Core ldea

Observe a sequence Xo.x = {Xo, . .., Xk }, the goal is to dynamically track for a
quantity Q(x). For Q(x¥) for k =0,1,...,K

Initial estimate Q(x°) ~ Q(x°)
Unbiased estimate & (Xo.x) of Q@(X¥) — Q(X*~!) such that for each
k=1,....K

E [&(Ro) | o] = Q(X) — QE")

Integrate the stochastic differential estimate as

K

Qok) = Q") + D &(Rou) (0.3)

k=1

e Call estimator 5(?0;;() the Stochastic Path-Integrated Differential
EstimatoR, or SPIDER for brevity

e Example: Q(x) is picked as Vf(x) (or f(x))

A similar idea, named SARAH, has been proposed by Nguyen et al. (2017)



Summary and Extension

Summary:

(i) Proposed SPIDER technique for tracking:
e Avoidance of excessive access of oracles and reduction of time complexity

e Potential application in many stochastic estimation problems

(i) Proposed SPIDER-SFO algorithms for first-order non-convex optimization
e Achieves O(¢~2) rate for finding e-FSP in expectation

e Proved that SPIDER-SFO matches the lower bound in the finite-sum case
(Carmon et al. 2017)

Extension in the long version: https://arxiv.org/pdf/1807.01695.pdf
(i) Obtain high-probability results for SPIDER-SFO
(i) Proposed SPIDER-SFO™ algorithms for first-order non-convex optimization
o Achieves O(c2) rate for finding (¢, O(v/2))-SSP
(iii) Proposed SPIDER-SZO algorithm for zeroth-order non-convex optimization

e Achieves an improved rate of O(de™?)



https://arxiv.org/pdf/1807.01695.pdf
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