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Logistic Regression

β

Logistic Regression
Given a point set X ⊂ Rd , and a

labeling function y : X → {−1, 1}
find a vector β, such that∑

p∈X

ln(1 + exp(−y(p) · pTβ))

is minimized.
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How Can We Summarize This Data Set?

Coreset

Find a set S of points, such that for any candidate vector β

cost(X , β) ≈ cost(S , β).
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Impossibility Result

minimize
∑
p∈A

ln(1 + exp(−y(p) · pTβ))

x

y

(−1, 0) (1, 0)

(0,−1)

(0, 1)

4



Impossibility Result

minimize
∑
p∈A

ln(1 + exp(−y(p) · pTβ))

x

y

(−1, 0) (1, 0)

(0,−1)

(0, 1)

4



Beyond Worst Case?

Define a notion of overlap µ

between the two classes.

Show that the total sensitivity

may be bounded in terms of µ.

If µ is large, a suitable sensitivity

distribution yields a small coreset.

Works in Streaming, MapReduce,

etc.
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Coreset Construction via Recursive Sampling

Algorithm

1. Compute X := UΣV T

2. Sample O(µ
√
n
(
d
ε

)2
) points with replacement with probability pro-

portionate to ‖Ui‖2
3. For i = 1 to log n

4. Recursively repeat step 2

Algorithm computes a coreset of size Õ(µ3d3ε−4 log4 µnd).

6



Coreset Construction via Recursive Sampling

Algorithm

1. Compute X := UΣV T

2. Sample O(µ
√
n
(
d
ε

)2
) points with replacement with probability pro-

portionate to ‖Ui‖2
3. For i = 1 to log n

4. Recursively repeat step 2

Algorithm computes a coreset of size Õ(µ3d3ε−4 log4 µnd).
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It Even Works In Practice!
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Conclusion and Open Problems

Summary of Results

• Impossibility result for coresets for logistic regression

• Beyond-Worst Case analysis for coreset construction

Open Questions

• Direct sampling scheme that avoids recursion?

• Is µ-complexity the correct measure?

• What other problems admit coresets in ”reasonable” cases?
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