

KONG: Kernels for ordered-neighborhood graphs

NeurIPS conference (poster #122)

Authors: Moez Draief, Konstantin Kutzkov, Kevin Scaman, Milan Vojnovic

Date: November 30, 2018

THE LONDON SCHOOL
OF ECONOMICS AND
POLITICAL SCIENCE

Background

- Graphs are highly complex objects
 - Combinatorial nature of the object
 - Many relevant features
 - size, connectivity, density, hubs, periphery, short range patterns, largescale structure, cliques, connected components, spectral characteristics...
 - How to make it usable for ML problems?
- Additional information: ordered neighborhoods
 - All edges may not be as important (e.g. friends on a social network)
 - Networks are often dynamic objects, changing through time
 - We may have a ranking among neighbors
 - Time of creation, importance, objective value, distance,...
 - How to account for this information?

The KONG algorithmic framework

- A scalable kernel representation for graphs
 - 1) **Iterative** algorithm for node representation
 - Weisfeiler-Lehman, breadth-first search...
 - 2) Ordered neighborhood representation using string kernels
 - K-gram counting approach, order captured by selection process
 - 3) Refined k-gram counting using **polynomial** or **cosine** kernels
 - More powerful representation
 - 4) **Sketching** method for kernel approximation
 - Approximate embedding of counting vectors preserving scalar products

Graph with string representations

Conclusion

The KONG framework: a new scalable algorithm for graphs kernels

- First method using ordered neighborhoods,
- Highly scalable approach that can handle graphs with millions of nodes in seconds on a laptop in a single-threaded implementation,
- Flexibility in the choice of the kernel function,
- Outputs vector representations
 - Can be used by any ML algorithm for regression, classification, clustering, etc...
- Excellent results on datasets from various domains, including
 - Anomaly detection in network flow graphs,
 - Gender prediction in recommender systems,
 - Affluence prediction in customer purchase graphs.

Poster #122

