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It	is	surprisingly	easy	to	make	a	
discriminatory	algorithm.
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1. We	want	to	find	the	sources	of	unfairness	to	guide	
resource	allocation.

2. We	decompose	unfairness	into	bias,	variance,	and	
noise.

3. We	demonstrate	methods	to	guide	feature	
augmentation	and	training	data	collection	to	fix	
unfairness.
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Data
• Data	processing
• Haijan and	Domingo-Ferrer,	
2013;	Feldman	et	al,	2015

• Cohort	selection
• Sample	size
• Number	of	features
• Group	distribution

We	should	examine	fairness	
algorithms	in	the	context	of	

the	data	and	model.
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True	data	functionError	from	variance	can	be	solved	
by	collecting more	samples.
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True	data	function

𝒚 = 𝟎. 𝟓𝒙𝟐

𝒚 = 𝒙 − 𝟏

Error	from	bias	can	be	solved	
by	changing	the	model	class.



Why	might	my	classifier	be	unfair?



Why	might	my	classifier	be	unfair?

Learned	model



Why	might	my	classifier	be	unfair?

Learned	model

Orange	dot	model	error



Why	might	my	classifier	be	unfair?

Learned	model

Orange	dot	model	error

Blue	dot	model	error



Why	might	my	classifier	be	unfair?

Learned	model

Orange	dot	model	error

Blue	dot	model	error

Error	from	noise	can	be	solved	
by	collecting more	features.



How	do	we	define	fairness?



How	do	we	define	fairness?

We	define	fairness	in	the	context	of	loss	like	false	positive	
rate,	false	negative	rate,	etc.	
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𝛾- 𝑌+, 𝑌, 𝐷 ∶= 𝑃2 𝑌+ ≠ 𝑌		 	𝐴 = 𝑎)

We	can	then	formalize	unfairness	as	group	differences.
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We	rely	on	accurate	Y labels	and	focus	on	algorithmic	error
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Note that	𝑁- indicates the expectation of 𝑁- over X and data D.

Accordingly, the expected discrimination level Γ9: = |𝛾;C − 𝛾̅<| can be decomposed
into differences in bias, differences in variance, and differences in noise.
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1. We	found	statistically	
significant	racial	differences	
in	zero-one	loss.
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1. We	found	statistically	
significant	racial	differences	
in	zero-one	loss.

2. By	subsampling	data,	we	fit	
inverse	power	laws	to	
estimate	the	benefit	of	more	
data	and	reducing	variance.
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1. We	found	statistically	
significant	racial	differences	
in	zero-one	loss.

2. By	subsampling	data,	we	fit	
inverse	power	laws	to	
estimate	the	benefit	of	more	
data	and	reducing	variance.

3. Using	topic	modeling,	we	
identified	subpopulations	to	
gather	more	features to	
reduce	noise.
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1. For	accurate	and	fair	models	deployed	in	real	world	
applications,	both	the	data	and	model	should	be	considered.

2. Using	easily	implemented	fairness	checks,	we	hope	others	
will	check	their	algorithms	for	bias,	variance,	and	noise--
which	will	guide	further	efforts	to	reduce	unfairness.

Come	to	poster	#120	in	Room	210	&	230.
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