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Langevin Dynamics

Langevin Dynamics:

dX (t) =|-VE,(X(t))dt

|

drift term diffusion term

® 3:Inverse temperature parameter
e B(t): standard Brownian motion

Asymptotic property (Roberts & Tweedie, 1996). converges to a
stationary distribution

m(dx) o< exp(—pF, (X))

Implication: The stationary distribution concentrates on the global minima.



Gradient Langevin Dynamics

Langevin Dynamics:

dX (t) = —VF,(X(t))dt + /28~ 1dB(t),

Gradient Langevin Dynamics (GLD, aka. Langevin Monte Carlo):
Xit1 = Xk —nVEF,(Xy) + /20871 - &,

@ 7)1is the step size
© €L IS a standard Gaussian random vector

Goal: bound the Optimization Error

I (Xk) — Frp(x™)] X" = argmin Fj, (x)

X




Decomposition of Optimization Error

Goal: bound the Optimization Error E[F), (X)) — F,(x")]

Decomposition: (Raginsky et al., 2017)

X, ———— X() ———— X —————— x*

3[F(X3) — Fu(X (kn))] E[F, (X (kn)) — Fu(X™)] E[F,(X7) — F,(x")

| | |

Discretization Error Ergodicity Model Error

Iteration complexity: E[F,(X,) — F,(x")] <e+ O (% log S)

~ 1 1
k=0 log” —) l
<€4>\*5 € Model Error




Novel Decomposition for Faster Rates

Goal: bound the Optimization Error E[F), (X)) — F,(x")]

Decomposition (this paper):

Xk—>X'“ —_— 3 X — ¥

S[Fu(Xp) = Fa(X")]  E[Fo(X") — Fo(X7)] E[FW(X7) = Fo(x)

| | |

Ergodicity (Discrete) Distance between Model Error
stationary distributions

Iteration complexity: E[F,(X,) — F,(x")] <e+ O (% log S)

~ 1 1 ~( 1 1
k=0 log” —) k:O( log—)
(€4>\*5 € EAY € ModeIlError




Global Convergence of Variants of GLD

Stochastic Gradient Langevin Dynamics (SGLD):
Yk_|_1 — Yk — UVG(Yk) + \/2775_1 * €L,

© unbiased stochastic gradient E[VG(X)|X]| = VF,(X)

Stochastic Variance Reduced Gradient Langevin Dynamics (SVRG-LD):
L1 = 4y — 7761% T \/2775_1 * €L,

e semi-stochastic gradient V= VGi(Zy) — VGL(Z®))+ VF,(Z®)
o Z“is a snapshot of Z,, updated after every m iterations.
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Theoretical Results Proof Road Map

» Lemma 1 (Bounding [))

Under smoothness and dissipative assumptions, GLD has a unique
invariant measure . on R?. It holds that
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Problem Setup and Background

Thanks!

» GLD: Under smoothness and dissipative assumptions, assume 1 < ¢,
GLD achieves E[F(X )] — E[F(x*)] < e+ O(d/f).

Iteration complexity: K = O(de 'A~" - log(1/e)) ’

» Optimization problem:

mxinF(x) = l/ani(x),

. . W . omk d
Assumptions on the function: > x* = argmin F(z) is the global minimizer. IE[F(X))] — E[F(X")]] < Crp 2(1+ ke™) exp ( - &? >,
> fiis M-smooth: ||V fi(x) — Vfi(y)ll2 < M|x — y|l2 Vx,y € R". > O(d/B) is the model error of Langevin dynamics. &
> Fis (m,b)-dissipative: (VF(x),x) > m|x[[5 — b, ¥x € R". > X is called an almost minimizer of I where p € (0,1), €' > 0 are absolute constants, and = 2M (b3 +

Note that F' is nonconvex. > A= O(e™%) is the spectral gap of Markov process Xj. mp +d)/b.
» Langevin Dynamics: stochastic differential equation » SGLD: Under the same conditions, if n < €, B > d°/(\e)*log(1/e),
dX(t) = —VF(X(t))dt + /28 1dB(t), SGLD achieves E[F(Yy)] — E[F(x")] < e+ O(d/5)

Where the parameters are ‘ Iteration complexity: K = O(d€71)\71 ° IOg(l/E))
> 3> 0 is called the inverse temperature parameter.
> B(t) is a standard Brownian motion in R?.

> Asymptotic property: the distribution of stochastic process X ()
converges to the following stationary distribution

T x exp(—pF(x)).

> is the stationary distribution of discrete-time process X,
» Lemma 2 (Bounding I5)
’ Under the same conditions, the invariant measures o and 7 satisfy
|[E[F(X")] = E[F(X7)]| < Cyn/B,

Cy > 0'is a constant depending on the generator of Langevin diffusion.

B is the mini-batch size chosen in SGLD.
» SVRG-LD: Under the same conditions, if we choose 1 < ¢, SVRG-LD
achieves E[F(Zk)| — E[F(x*)] < e.

lteration complexity: K = O(Ld°B~'A~*e~*-log*(1/e) + 1/e) ’

» Lemma 3 (Bounding I5)
Under the same conditions, the error I3 can be bounded by
» Comparison of gradient complexity with state-of-the-art: E[F(X7)] - F(x") < %bg <6M(mﬁ/d + 1)>

> Combining Lemmas 1, 2 & 3 yields the results for GLD.

Table: Gradient complexities to converge to the almost minimizer.

GLD SGLD SVRG-LD
[Raginsky et al., (2017)]|O(%) - €9 O(L) - £ N/A

Langevin Dynamics Based Algorithms This paper 5(2) 0D §(1) - 0 5({%) . 0d)

Choose B = /ne ¥/? and L = \/ne*/* for SVRG-LD.

> 7 concentrates on the global minimizer of F'.
> Discretize it to obtain optimization algorithm.

Poster session:

Proof for SGLD & SVRG-LD

» Gradient Langevin Dynamics (GLD)

» Decomposition of the optimization error of SGLD

10:45 AM -- 12:45 PM

‘ X1 = X, —VE(X}) + v/ 20/ Bey, ’

Decomposition of Optimization Error

E[F(Y})] — F(x") = E[F(Y:) — F(X3)] + E[F(X3)] - F(x)
> Lemma 4 (The distance between SGLD and GLD)

> € an additive standard Gaussian noise » Goal: bound the optimization error E[F'(X})] — F(x")
> 1: step size » Decomposition: Under smoothness and dis.sipative assumptions, the outputs of SGLD
O O I I I > Converges fast ©; computation is high when n is large ® E[F(X,)] — F(x") (Yk) and GLD (X) satisfy
Stochastic Gradient Langevin Dynamics (SGLD) _ -~ I W ™ ™ * n— B
E[F(Xk)l F(X )l—FE[F(X )I F(X )l+E[F(X )I] F(X ), |E[F(YK)] _ ]E[F(XK)H < Cl\/BF(M\/f-l- G)Kn 1 m
Yii =Y —n/BY V(YY) +/2n/Be '
bl =/ % 1i(¥e) n/Bex > p: the stationary distribution of discrete-time process X, where C1 is an absolute constant and T' = 2(1+1/m)(b+2G2+d/3).
> 7 the stationary distribution of continuous-time process X (t) — _
> V/i(Yy): unbiased stochastic gradient, i.e., E[V f;(x)] = VF(x) I, Geometric ergodicity of GLD > Combining results for GLD and Lemma 4 yields the results for SGLD.
> Ij: asubset of {1,...,n} with |[;| = B I, Distance between two stationary distributions » Decomposition of the optimization error of SVRG-LD
> Reduces the per iteration gradient complexity ®; converges slowly ® I; Gap between Langevin diffusion and global minimum E[F(Zy)] — F(x*) = E[F(Zy) — F(X})] + E[F(X})] — F(x)
Stochastic Variance Reduced Gradient Langevin Dynamics » Comparison with existing decomposition approach Lemma 5 (The distance between SVRG-LD and GLD)
SVRG-LD *
( ) X (t) X"T----+X Under the same conditions, the outputs of SVRG-LD (Z) and GLD
Vi=1/BY_ (Vfi(Zi) — Vi (ZY) + W) (X k) satisfy
= [EIF(Zx)] - BF(Xx)
Zy1 = Zr — Vi + V/2n/Ber LM?(n — B)(3LnB(M?T + G2) +d/2
— Xk N Xu §01FK3/47']4 (TL )( B?ﬂ( 1) +G)+ / )
5) : : n—
> Z,( Vis a snaNpsh?t of Zj; every _L 'teratlor?s' Figure: Blue arrow: decomposition scheme in [Ragnisky et al., (2017)]; Red arrow:
> W= VF(Z(‘S) is the full gradient at Z(). decomposition scheme in this paper. where (] is an absolute constant, I' = 2(1 + 1/m) (b + 2G* + d/3)
> Multiple-epoch algorithm (each epoch has L iterations). > Bypass the discretization error between X and X (t). and L is length of each epoch.
> Reduces the per iteration gradient complexity ® and converges faster > Directly analyze the convergence to stationarity of X}

than SGLD ®
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> Combining previous results and Lemma 5 completes the proof.




