NeurIPS 2018 Spotlight Presentation

Removing Hidden Confounding by Experimental Grounding

Nathan Kallus	Aahlad Manas Puli	Uri Shalit
Cornell	NYU	Technion
(↑ me)		

Poster: Today 10:45AM-12:45PM @ Room 210 & 230 AB #2

Individual-level causal effects

Patient Anna is diagnosed with type-II diabetes

- Blood sugar: 8.7% A1C
 Age: 51
 Weight: 102kg
 BMI: 35.3
 ...
- **Q**: What first-line glucose control treatment to give? Insulin (t = 1) or Metformin (t = 0)?
 - Want to know the individual-level causal effect of treatment, i.e., the conditional average treatment effect (CATE)

$$\tau(X) = \mathbb{E}[Y(1) - Y(0) \mid X]$$

• Y(t) = Anna's potential outcome under treatment t

Same Q in targeted advertising, public policy, …

Large-scale observational data can help

Age	Weight	BMI	A1C	LDL	T	Y
49	106	31	\frown	\sim	Insulin	9
54	89	26	\sim	\frown	Metformin	7
43	130	38	\frown	\sim	Metformin	10
÷	:	÷	÷	:	:	÷

Large-scale observational data can help

Age	Weight	BMI	A1C	LDL	T	Y
49	106	31	\sim	\sim	Insulin	9
54	89	26	\sim	\sim	Metformin	7
43	130	38	\frown	\sim	Metformin	10
÷	:	÷	:	÷	:	÷

Fit $\omega(X) = \mathbb{E}[Y \mid X, T = 1] - \mathbb{E}[Y \mid X, T = 0]$ to the data

E.g.: Wager & Athey '17 (CF), Shalit et al. '17 (TARNet),

usually assume $\omega = \tau$ (no hidden confounding)

The problem with hidden confounding

- Hidden confounding = hidden correlations between treatments and outcome idiosyncrasies
 - E.g.: healthier patients tend to get metformin
 - Confounding $\implies \omega \neq \tau \otimes$
 - To some extent always unavoidable in observational data

The problem with hidden confounding

- Hidden confounding = hidden correlations between treatments and outcome idiosyncrasies
 - E.g.: healthier patients tend to get metformin
 - Confounding $\implies \omega \neq \tau \otimes$
 - To some extent always unavoidable in observational data

Unconfounded by design 🙂 Limited generalizability 🙁 Small samples 😂 **Observational data**

Confounded by default Covers population of interest Large samples Our Q: How to use a small & limited experimental dataset to remove confounding errors in individual-level treatment effect estimates from a large observational dataset?

Experimental grounding

- Our Q: How to use a small & limited experimental dataset to remove confounding errors in individual-level treatment effect estimates from a large observational dataset?
- Outline of our method:
 - ▶ Fit û(X) using blackbox on observational data (e.g., causal forest, TARNet, ...)
 - A new way to fit η(X) = ω(X) − τ(X) across the observational and experimental datasets
 - ▶ Return the grounded estimate $\hat{\tau}(X) = \hat{\omega}(X) \hat{\eta}(X)$

- Our Q: How to use a small & limited experimental dataset to remove confounding errors in individual-level treatment effect estimates from a large observational dataset?
- Outline of our method:
 - ▶ Fit û(X) using blackbox on observational data (e.g., causal forest, TARNet, ...)
 - A new way to fit η(X) = ω(X) − τ(X) across the observational and experimental datasets

• Return the grounded estimate $\hat{\tau}(X) = \hat{\omega}(X) - \hat{\eta}(X)$

Strictly weaker than assuming no confounding $(\eta = 0)$

Empirical results

- Estimate the effect of large vs small classrooms on first graders' test scores
 - Data from STAR experiment (Word et al. 1990)

Thank you!

Poster: Today 10:45AM–12:45PM @ Room 210 & 230 AB #2