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If real-world signals consist of a few patterns,

a “good” dictionary gives sparse representations of each signal
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Dictiona ry selection [Krause-Cevher'10]

Union of existing dictionaries

DCT basis Haar basis D4 bis Coiflet basis

Selected atoms as a dictionary

Atoms for each patch y; (Vt € [T])
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Dictiona ry se lection [Krause-Cevher'10]

Union of existing dictionaries

Haar basis Db4 bais Coiflet basis
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Dictionary selection with sparsity constraints

=
Maximize max Z subject to |X]| < k
XCV (Z1,"',ZT)€I: ZtCX t:Z,I ft( t) J | |

1st maximization:

selecting a set X of atoms
as a dictionary
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Dictionary selection with sparsity constraints

=
Maximize max Zt) subjectto |X| < k
XEV (Z1,-+,27)€L: ZtCX ; fe(Zt) J 1X]

2nd maximization:

selecting a set Z; C X of atoms
for a sparse representation of each patch
under sparsity constraint 7

4/ 9



Dictionary selection with sparsity constraints

.
Maximize max Z subject to |X]| < k
XSV (Za,, ZrYeL: ZeCX ; fe(Z) J Xl <

set function representing

sparsity constraint
P Y the quality of Z; for patch y;
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Dictionary selection with sparsity constraints

Maximize max (Zt) subjectto |X| <k
XSV (Z1,~,Z7)€L: ztcxzft t) J X

set function representing

sparsity constraint
P Y the quality of Z; for patch y;

Our contributions

0 Replacement OMP:

A fast greedy algorithm with approximation ratio guarantees
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Dictionary selection with sparsity constraints

.
Maximize max Z subject to |X]| < k
XSV (Za,, ZrYeL: ZeCX ; fe(Z) J Xl <

set function representing
the quality of Z; for patch y;

sparsity constraint

Our contributions

0 Replacement OMP:

A fast greedy algorithm with approximation ratio guarantees

e p-Replacement sparsity families:

A novel class of sparsity constraints generalizing existing ones 4/ 9



0 Replacement OMP

Replacement Greedy for two-stage submodular maximization [Stan+17]
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o Replacement OMP

Replacement Greedy for two-stage submodular maximization [Stan+17]

l SPEHN® application to dictionary selection

Replacement Greedy O(s%dknT) running time
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o Replacement OMP

Replacement Greedy for two-stage submodular maximization [Stan+17]

l SPEHN® application to dictionary selection

Replacement Greedy O(s%dknT) running time

l PJaleRi=Stlie O(s2d) acceleration with the concept of OMP

Replacement OMP O((n + ds)kT) running time
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0 Replacement OMP

Sl approximation running empirical
ratio time performance
SDSma [Krause-Cevher'10] v~ v~
SDSomp [Krause-Cevher'10] v~
Replacement Greedy v~ v~
Replacement OMP v~ v~ v~
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9 p-Replacement sparsity families

average sparsity
[Cevher-Krause'11]

Ul

average sparsity
w/o individual sparsity

Ul

block sparsity individual matroids

s S individual sparsity ¢ )
[Krause-Cevher'10] z [Stan+'17]
[Krause-Cevher'10]
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9 p-Replacement sparsity families

(3k—1)-replacement sparse

average sparsity
[Cevher-Krause'11]

(2k — 1)-replacement sparse S.E]

average sparsity
w/o individual sparsity

k-replacement sparse Ul

block sparsity individual matroids

s S individual sparsity ¢ )
[Krause-Cevher'10] = [Stan+'17]
[Krause-Cevher'10]




9 p-Replacement sparsity families

We extend Replacement OMP to p-replacement sparsity families

Theorem
2

H mZS _ _K
Replacement OMP achieves e, (1 exp( 5

Ms,2

Mos ))'approximation

if Z is p-replacement sparse

Assumption

A
Zt) = max ue(w
ft( t) W;: supp(w;)CZ; t( t)
where u; is mas-strongly concave on Qs = {(X, y): [[Xx—yllo < 2s}
and Ms,2-smooth on Qs> = {(X, y): [Ixllo <5, [lyllo <5, lIx—yllo < 2}
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Overview

0 Replacement OMP: A fast algorithm for dictionary selection

e p-Replacement sparsity families: A class of sparsity constraints

Other contributions

® Empirical comparison with dictionary learning methods

@ Extensions to online dictionary selection
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