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Submodularity

» Diminishing returns property for set functions.




Submodularity

» Diminishing returns property for set functions.




Streaming Algorithms

e Many practical scenarios we need to use streaming
algorithms:

the data arrives at a very fast pace

there is only time to read the data once

random access to the entire data is not possible and

only a small fraction of the data can be loaded to the
main memory

Summary



Streaming Algorithms

e Many practical scenarios we need to use streaming
algorithms:
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Constrained Non-Monotone Submodular Maximization

S* = argmax f(S)

Sel ¥-constraints
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independent sets ‘k' 7N
hypereraph ATl
b-matching
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. . hypergraph b-matchin matroid
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. matching “matchin partition
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[Chekuri et al., 2015]



The Sample-Streaming Algorithm

Data Stream

Keep with probability g =

p++/p(p+1)+1

(e Si0) = (11 0)- F(U: Sir) |
. then LetS; < S; 1\ U; + u;.




Constrained Submodular Maximization

| Theorem 1: Non-monotone Submodular Maximization

\ »
' » The Sample-Streaming algorithm provides a solution for the problem
of maximizing a non-negative submodular function f subject to a |
p-matchoid constraint with a (2p + 2./p(p + 1) + 1)-approximation
guarantee l
‘ » The space complexity of this algorithm is O (k) ‘

» The algorithm uses, in expectation, O (km. /p) value and independence
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| Theorem 2: Monotone Submodular Maximization
\
' » The Sample-Streaming algorithm provides a solution for the problem |
| of maximizing a non-negative monotone submodular function f |
subject to a p-matchoid constraint with a 4p-approximation guarantee |

i

» The space complexity of this algorithm is O (k)
J » The algorithm uses, in expectation, O (ki /p) value and independence

v



Constrained Submodular Maximization

| Theorem 1: Non-monotone Submodular Maximization
|
| » The Sample-Streaming al
of maximizing a non-negative

]
|

orithm provides a solution for the problem |

submodular function f subject to a |
p-matchoid constraint with'a (2p + 2. /p(p + 1) + 1)-approximation
guarantee |
‘ » The space complexity of this algorithm is O (k) ‘

» The algorithm uses, in expectation, O (km. /p) value and independence

o
]'1
Q)
o
()
®)
c
()
=,
(©)
wn
o
‘(D
@
()
Q)
@)
-
Q)
-
=,
<
[ ——
-
o]
@
(©)
\3
()
)
+

— —— B ———— —

| Theorem 2: Monotone Submodular Maximization
\
' » The Sample-Streaming algorithm provides a solution for the problem |
| of maximizing a non-negative monotone submodular function f |
subject to a p-matchoid constraint with a 4p-approximation guarantee |

i

» The space complexity of this algorithm is O (k)
J » The algorithm uses, in expectation, O (ki /p) value and independence

v



Constrained Submodular Maximization

| Theorem 1: Non-monotone Submodular Maximization
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| Theorem 2: Monotone Submodular Maximization

ides a solution for the problem ]1
submodular function f |

subject to a p-matchoid constraint with a - -approximation guarantee |

» The space complexity of this algorithm is O (k) ‘
J » The algorithm uses, in expectation, O (ki /p) value and independence *

| of maximizing a,non-negative monotone]
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Conclusion

’Algorithm Function Approx. Ratio Memory #Queries‘
Chekuri et al., 2015 Monotone 4p O(k) O(nkm)
Chekuri et al., 2015 (R) Non-monotone 5p+12_t_1/p O (% log %) O(""Zm log £)
Chekuri et al., 2015 Non-monotone 9p+1(i(€\/z‘)) O(g log g) O("’“Tm log g)
LOCAL-SEARCH Non-monotone 4p 4+ 4./p+1 O(k\/DP) O(n./Pkm)

Sample-Streaming (R) Monotone

Sample-Streaming (R) Non-monotone 4p

e Qur algorithm provides the best of

O (k)
O (k)

O(nkm/p)
O(nkm/p)

4p
2 —o(1)

three worlds:

* the tightest approximation guarantees in various settings

* minimum memory requirement
» fewest queries per element
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