Do Less, Get More: Streaming Submodular Maximization with Subsampling

Moran Feldman¹

Amin Karbasi²

Ehsan Kazemi²

¹Open University of Israel and ²Yale University

Data Summarization

Submodularity

Diminishing returns property for set functions.

$$f\left(\left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\} \right) - f\left(\left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\} \right)$$

$$f\left(\left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\} \right) - f\left(\left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\} \right)$$

 $\forall A \subseteq B \subseteq V \text{ and } x \notin B$ $f(A \cup \{x\}) - f(A) \ge f(B \cup \{x\}) - f(B)$

Submodularity

Diminishing returns property for set functions.

Streaming Algorithms

- Many practical scenarios we need to use streaming algorithms:
 - the data arrives at a very fast pace
 - there is only time to read the data once
 - random access to the entire data is not possible and only a small fraction of the data can be loaded to the main memory

Surveillance camera

Summary

Streaming Algorithms

 Many practical scenarios we need to use streaming algorithms:

Constrained Non-Monotone Submodular Maximization

$$S^* = \arg\max_{S \in \mathcal{I}} f(S)$$

$$constraints$$

• Set system: a pair $(\mathcal{N}, \mathcal{I})$, where \mathcal{N} is the ground set and $\mathcal{I} \subseteq 2^{\mathcal{N}}$ is the set of independent sets

• p-matchoid: a set system (\mathcal{N}, \mathcal{I}) where there exist m matroids ($\mathcal{N}_i, \mathcal{I}_i$) such that every element of \mathcal{N} appears in the ground set of at most p matroids and

$$\mathcal{I} = \{ S \subseteq 2^{\mathcal{N}} \mid \forall_{1 \le i \le m} \ S \cap \mathcal{N}_i \in \mathcal{I}_i \}$$

[Chekuri et al., 2015]

The Sample-Streaming Algorithm

Data Stream

$$U_i \leftarrow \text{EXCHANGE-CANDIDATE}(S_{i-1}, u_i)$$

if
$$f(u_i \mid S_{i-1}) \ge (1+c) \cdot f(U_i : S_{i-1})$$

then Let $S_i \leftarrow S_{i-1} \setminus U_i + u_i$.

Constrained Submodular Maximization

Theorem 1: Non-monotone Submodular Maximization

- The Sample-Streaming algorithm provides a solution for the problem of maximizing a non-negative submodular function f subject to a p-matchoid constraint with a $(2p+2\sqrt{p(p+1)}+1)$ -approximation guarantee
- ▶ The space complexity of this algorithm is O(k)
- The algorithm uses, in expectation, O(km/p) value and independence oracle queries per each arriving element.

Theorem 2: Monotone Submodular Maximization

- The Sample-Streaming algorithm provides a solution for the problem of maximizing a non-negative monotone submodular function f subject to a p-matchoid constraint with a 4p-approximation guarantee
- ightharpoonup The space complexity of this algorithm is O(k)
- The algorithm uses, in expectation, O(km/p) value and independence oracle queries per each arriving element.

Constrained Submodular Maximization

Theorem 1: Non-monotone Submodular Maximization

- The Sample-Streaming algorithm provides a solution for the problem of maximizing a non-negative submodular function f subject to a p-matchoid constraint with a $(2p+2\sqrt{p(p+1)}+1)$ -approximation guarantee
- ightharpoonup The space complexity of this algorithm is O(k)
- The algorithm uses, in expectation, O(km/p) value and independence oracle queries per each arriving element.

Theorem 2: Monotone Submodular Maximization

- The Sample-Streaming algorithm provides a solution for the problem of maximizing a non-negative monotone submodular function f subject to a p-matchoid constraint with a 4p-approximation guarantee
- ightharpoonup The space complexity of this algorithm is O(k)
- The algorithm uses, in expectation, O(km/p) value and independence oracle queries per each arriving element.

Constrained Submodular Maximization

Theorem 1: Non-monotone Submodular Maximization

- The **Sample-Streaming** algorithm provides a solution for the problem of maximizing a **non-negative submodular function** f subject to a p-matchoid constraint with a $(2p+2\sqrt{p(p+1)}+1)$ -approximation guarantee
- ightharpoonup The space complexity of this algorithm is O(k)
- The algorithm uses, in expectation, O(km/p) value and independence oracle queries per each arriving element.

Theorem 2: Monotone Submodular Maximization

- The Sample-Streaming algorithm provides a solution for the problem of maximizing a non-negative monotone submodular function f subject to a p-matchoid constraint with a 4p-approximation guarantee
- ightharpoonup The space complexity of this algorithm is O(k)
- The algorithm uses, in expectation, O(km/p) value and independence oracle queries per each arriving element.

Conclusion

Algorithm	Function	Approx. Ratio	Memory	#Queries
Chekuri et al., 2015	Monotone	4p	O(k)	O(nkm)
Chekuri et al., 2015 (R)	Non-monotone		$O(rac{nk}{arepsilon^2}\lograc{k}{arepsilon})$	$O(rac{nk^2m}{arepsilon^2}\lograc{k}{arepsilon})$
Chekuri et al., 2015	Non-monotone	$rac{9p+O(\sqrt{p})}{1-arepsilon}$	$O(rac{k}{arepsilon}\lograc{k}{arepsilon})$	$O(rac{nkm}{arepsilon}\lograc{k}{arepsilon})$
Local-Search	Non-monotone	$4p + 4\sqrt{p} + 1$	$O(k\sqrt{p})$	$O(n\sqrt{p}km)$
Sample-Streaming (R)	Monotone	4p	O(k)	O(nkm/p)
Sample-Streaming (R)	Non-monotone	4p + 2 - o(1)	O(k)	O(nkm/p)

- Our algorithm provides the best of three worlds:
 - the tightest approximation guarantees in various settings
 - minimum memory requirement
 - fewest queries per element

Poster: Today (Thu Dec 6th) 10:45 AM-12:45 PM @ Room 210 & 230 AB #75