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Multiplicative Noise

e Multiplicative noise is widely used as a regularization technique for deep neural networks
(DNNs). General form:
% = uix;, Vi € H' (1)
The noise u; satisfies E [u;] = 1, such that E [X] = x;.
e E.g., dropout. Let m; be the dropout mask sampled from a Bernoulli distribution, Bern (p),

then the equivalent multiplicative noise is given by

uj = m;/p. (2)

e Multiplicative noise can adapt the scale of noise to the scale of features, which may con-

tribute to its empirical success.



Training with Noise

e In a DNN, if noise is applied to the activations of layer /, the pre-activations (without

biases) of the next layer is
~ . /+1
Zj:ZWUX,',VJG,H+. (3)
ieH!

e It can be decomposed into signal and noise components as
S n S
zZ = E wix;, and z = z — z7 = E wi (u; — 1) x;. (4)
i i

e To reduce the interference of noise, a simple strategy that can be learned is to increase
the signal-to-noise ratio (SNR) of pre-activations.



The Feature Correlation Effect

e We can model the tendency of increasing SNR as an implicit objective function:

E|(z -E[5])°]

maximize SNR(z) =

e Maximizing SNR (z;) is equivalent to

2E [Z#; > (wixi) (Wf’JXi’)] E [z]°

maximize — . (6)

E [Ei (Wijxi)2] E [E; (Wini)Q}

e Training with multiplicative noise = Increasing feature correlation




Removing the Correlation Effect

e An immediate solution is to truncate the gradient through the noise component:
E (z-S —E [z?])2
J J

maximize SNR (z) = i (7)

e However, maximizing SNR(z;) is now equivalent to increasing the magnitude of the
signal component.

e A better solution:

noise gradient truncation + batch normalization



Non-Correlating Multiplicative Noise (NCMN)

e NCMN-1: decomposes batch-normalized pre-activations (before scaling and shifting),

and truncates the gradient through the noise component.

2{ = BN (z7) + AsConst (BN (z;) — BN (z7)) . (8)
e NCMN-0: approximates NCMN-1 by directly applying noise to batch-normalized pre-
activations.
2{ = 27 + AsConst (v;27) . (9)

e NCMN-O0 is computationally efficient, and is as simple as dropout.



Non-Correlating Multiplicative Noise

e NCMN-2: the decomposition is done once every two layers, works better on residual

networks.

25 =V (oM (x))), and 27 = W2 (ut @ o/t (uf © ) - 2, (10)

2, = 2; + AsConst (2]) , (11)

e NCMN-2 can be seen as a simplified version of shake-shake regularization that does
not require extra residual branches.



Results - Feature Correlations
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(a) Results on CIFAR-10. (b) Results on CIFAR-100.

Figure 1: Feature correlations of CNN-16-10 networks trained with different types of noise.



Results - Feature Correlations
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(a) Results on CIFAR-10. (b) Results on CIFAR-100.

Figure 2: Feature correlations of WRN-22-7.5 networks trained with different types of noise.



Results - Classification Accuracies

Table 1: CIFAR-10/100 error rates (%) of Table 2: CIFAR-10/100 error rates (%) of

CNN-16-10 networks trained with different types =~ WRN-22-7.5 networks trained with different

of noise. types of noise.
Noise type CIFAR-10 CIFAR-100 Noise type CIFAR-10 CIFAR-100
None 4.05+0.05 19.2240.05 None 3.68+0.02 19.2940.07
MN 3.76+0.00 18.08+0.03 MN 3.59+0.06 18.60+0.03
NCMN-0 3.561+0.07 17.37+0.05 NCMN-0 3.34+0.02 17.054+0.08
NCMN-1 3.41+0.07 17.554+0.06 NCMN-1 3.02+0.06 17.0940.10

NCMN-2 3.44+£0.03 18.16+0.04 NCMN-2 3.00+0.05 16.70+0.13




Results - Classification Accuracies

Table 3: More results on CIFAR-10/100 for comparison.

Model Params Epochs Noise type CIFAR-10  CIFAR-100
DenseNet-BC (250,24) [2] 15.3M 300 None 3.62 17.60
ResNeXt-26 (2x96d) [1] 26.2M 1800 Shake/None 2.86/3.58 —
ResNeXt-29 (8x64d) [1] 34.4M 1800 Shake/None = 15.85/16.34
WRN-28-10 [3] 36.5M 200 Dropout/None  3.89/4.00 18.85/19.25
DenseNet-BC (40, 48) 3.9M 3000 NCMN-0/None 3.51/4.07 17.68/19.92
CNN-16-3 1.6M 200 NCMN-0/None 4.47/5.10 21.92/24.97
CNN-16-10 171M 200 NCMN-1/None 3.41/4.05 17.55/19.22
WRN-22-2 1.1M 200  NCMN-0/None 4.56/5.19 23.54/25.90
WRN-22-7.5 151M 200 NCMN-2/None 3.00/3.68 16.70/19.29
WRN-22-5.4x2 15.5M 200 Shake/None 3.51/4.04 17.77/19.71

WRN-28-10 36.5M 200 NCMN-2/None 2.78/3.70 15.86/18.42
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Conclusion

e We identified the feature correlation effect of multiplicative noise, and developed non-
correlating multiplicative noise as a better alternative to dropout for batch-normalized
neural networks.
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