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Robust Subspace Estimation in a Stream

Input: A set of n data points {a;}7_; in R? and a dimension k

Output: A k-dimensional subspace S such that:
S Gl dist(S, a)

is minimized, where dist(S, x) := minycs ||x — ||,
We are given the data points in a stream:
d1,4d2,4d3,...,dn

and we wish to solve the problem in poly(kd log(nd)) space.

(Our algorithm even works in the turnstile streaming model with
arbitrary, entry-wise +/— updates.)
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We can write this objective as a low rank approximation problem:

in ||A— AX
min_ | 2.1

where ||X||2,1 =20 1 Xl
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approximate to within a (1 + m) factor.
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Hardness

[Clarkson and Woodruff '15] shows that the offline problem is NP-hard to
approximate to within a (1 + m) factor. = There cannot be a

(1 + €)-approximation algorithm running in time poly(k/¢)!
Algorithms

[Clarkson and Woodruff '15] also give a (1 + €)-approximation algorithm
that runs in time

O(nnz(A)) + (1 + d)poly (k) e (‘”'y (k»
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Our Results

Theorem (Streaming Alg. for Robust Subspace Estimation)

There is a randomized algorithm giving a (1 + €)-approximate
optimal solution to

min HA — AXH2,1
X rank k
with the following guarantees:

1. Runs in turnstile streaming model with space:

D)

2. Runs in time (offline):

O(nnz(A)) + (n + d)poly (k'og(”d)> +exp <po/y <i)>

€

(same as [Clarkson Woodruff '15] in leading order terms)
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Can brute force in time
exponential in dimension!

(iii) All dimensions of
Y, Z are small
i.e. poly(k/e) =



Experiments: Synthetic Data
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(a) Random matrix + large outliers  (b) Rank-2 matrix with large outliers

Comparison of Algorithm against SVD on synthetic data.



Experiments: Real-World Data
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(a) Glass data set (b) E. Coli. data set

Comparison of Algorithm against SVD on real-world data.
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