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‘ Feature Vectors
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 k-Nearest Neighbours
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‘ k-Nearest Neighbours

New Movie ]
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‘ Dimensionality Reduction

= Given ¢,6 € (0,1) find
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‘ Dimensionality Reduction

_ For some smai M
m Glven g,0 € om

f:R'\< R™ such that for every x,y € R"

Think of n as HUGE J

. o AARHUS
Fully Understanding the Hashing Trick / v
UNIVERSITY



‘ Dimensionality Reduction

= Given ,6 € (0,1) find random
f:R"™ - R™ such that for every x,y € R"

Prlilf() - fFOIZe (@t e)llx—ylEl=1-6 |
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‘ Dimensionality Reduction

= Given ,6 € (0,1) find random
A € R™ ™ such that for every x,y € R"

Pr{|A(x —)|IZ € (1 + e>||x —yl2]=1-6

[Focus on linear projections

" Why linear?
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‘ Dimensionality Reduction
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‘ Johnson Lindenstrauss Lemma [JL’84]

= Glven g,6 € (0,1) there exists a random

linear A € R™*™ such that for every x
\

Pr{lAI3 € A+ )31 > 16|

AN

e In most proofs matrix is as
=0 (lg 1/5> dense as possible.
g €2 Embedding takes O (mn)
\operat|ons. P
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‘ Johnson Lindenstrauss Lemma [JL’84]

= Glven g,6 € (0,1) there exists a random
linear A € R™*™ such that for every x

PrillA@IZ e 1+ o)lxlZ]=>1-6

AN

If A is sparse, this In most proofs matrix is as
can be made faster. dense as possible.

_Embedding takes O (mn)
operations.
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‘ Feature Hashing [Weinberger et al.

%Add random signs J
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General Idea: Shuffle
the entries of x
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‘ Feature Hashing [Weinberger et al.

General Idea: Shuffle

%Add random signs J
/

the entries of x

x[ 1011001001 |

V \\

|~ \\\

g @ ol o

AARHUS

Fully Understanding the Hashing Trick
UNIVERSITY



‘ Feature Hashing [Weinberger et al.

General Idea: Shuffle
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‘ Feature Hashing [Weinberger et al.

General Idea: Shuffle

| Add random signs J the entries of x

/ _—
4 p

Observation: This operation is linear.

Moreover, every column has exactly one non-zero entry.
: )
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'The Hashing Trick — With High Prob.

= Observation: If m is large enough, and the
“mass” of X Is not concentrated in few entries,
then the trick works with high probability.

le=01
/1
1
/(1)} h:{1,2,...,nf})£{1,2,___,m}[h(l) = h(2)] = =
0 ~
5 Il 1
: \0/ Il ﬁ-J
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'The Hashing Trick — With High Prob.

Success iff no collision occurs [nough, and the
ated In few entries,

trick works with high probability.
le=01

the

Pr [h(1) = h(2)] =

h:{1,2,..n}->{1,2,..m

Ol o A

{ To succeed we need m > -
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Tight Bounds — Formal Problem

m FIxm,s, 0.

= Define v(m, ¢, 6) to be the maximum v such that
whenever ||x||, < v||x||, then feature hashing
works.
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Tight Bounds — Formal Problem

m FIxm,s, 0.

v(m, g,6) to be the maximum v such that
er ||x||» < vl||x]||, then feature hashing

We have a fixed budget, and
a fixed room for error.

\
Evaluating v has been an

open question for almost a

decade.
\_ J
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Tight Bounds — Our Result
1 Kest

\
o 5 Essentially, this means our
mFIXMmM,E,O. .
T budget is too small to do
Theorem. ) anything meaningful.
c logg %/
1. lim <-—= thenv = 0~
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Tight Bounds — Our Result
S D

= 5 Essentially, this means our
" FiXm, &, 0. budget is rich enough to do
Theorem. anything.
C log1 %
1. fm<—= thenv =

2
2. IfmZchenv=1.
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Tight Bounds — Our Result

IF ANNTWING BAD HAPPENS,
ITS NOT MY FAULT. TS FATE.

)

m FIxm,s, 0.
~
This is tight, |
which means this is the right |
expression. Y
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. . : 4 y )
Empirical Analysis ( \
/ \ le £m le £2m
Results show that the ©-constant = . ( Ig 1/6) lg1/6 ¢
is close to 1. \ lg1/6 ,V lg1/6 )
This implies that Feature =
Hashing’s performance can be /
very well predicted in practice . - 3e
using our formula. /\ 2 ) 3 j"

[ em e’m
log 1 log 1
log = log =
v=20 \/E-min< 16, 15>
\ logg N logg
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