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Loop Invariant    <>   Halting Problem

-- Some of rules can be automated:

-- Except ‘while rule’

sequence rule, conditional rule, ......
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Solution to generalization

• Transferable graph representation of source code

=>

=> SSA Transformation



Code2Inv: End-to-end learning framework

......

! ≥ 0 && ! < 4 ' ≥ 100
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Code2Inv as an 
out-of-the-box 
solver  

Solved more instances
with same # Z3 calls

Ours
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void main (int n) {
int x = 0
int w = 0
int m = 0
int z = 0
while (x < n) {
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m = x
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}
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Generalization ability of Code2Inv

1 confounding variable 3 confounding variables 5 confounding variables



Poster session:

Room 210 & 230 AB #23

05:00 -- 07:00 PM


