
Learning Loop Invariants for
Program Verification

Xujie Si*, Hanjun Dai*, Mukund Raghothaman, Mayur Naik, Le Song

University of Pennsylvania

Georgia Institute of Technology

NeurIPS 2018

Code: https://github.com/PL-ML/code2inv
* equal contribution

https://github.com/PL-ML/code2inv

Program verification
• Prove whether your code is bug-free

Program verification
• Prove whether your code is bug-free

-- Some of rules can be automated:

sequence rule, conditional rule,

Program verification
• Prove whether your code is bug-free

Loop Invariant <> Halting Problem

-- Some of rules can be automated:

-- Except ‘while rule’

sequence rule, conditional rule,

What is loop invariant?

What is loop invariant?
Program

What is loop invariant?
Program Loop Invariant

What is loop invariant?
Program Loop Invariant

Requirement:

Loop Invariant Checker

Loop Invariant Checker

Loop Invariant Checker

Difficulties of learning loop Invariant

1. Highly sparse and non-smooth reward

code

Difficulties of learning loop Invariant

1. Highly sparse and non-smooth reward

Agent

code

Difficulties of learning loop Invariant

1. Highly sparse and non-smooth reward

Agent

code

Difficulties of learning loop Invariant

1. Highly sparse and non-smooth reward

Agent

0 / 1 (Correct or not)

code

Difficulties of learning loop invariant

2. Generalization ability

Agent

0 / 1 (Correct or not)

code1

...... Agent

0 / 1 (Correct or not)

codeN

! ≥ 1 ⋁ % = 0

Agent

0 / 1 (Correct or not)

code2

() ≤ 2 ⋀ (- > 0

Difficulties of learning loop invariant

2. Generalization ability

Agent

0 / 1 (Correct or not)

code1

...... Agent

0 / 1 (Correct or not)

codeN

! ≥ 1 ⋁ % = 0

Agent

0 / 1 (Correct or not)

code2

() ≤ 2 ⋀ (- > 0

AgentNew code =>

Solution to sparsity and non-smoothness

Agent

0 (not correct)

code

Solution to sparsity and non-smoothness

Agent

0 (not correct)

code

Counter-example: why am I wrong?

! = 1, % = −10

Solution to sparsity and non-smoothness

Agent

0 (not correct)

code

Counter-example: why am I wrong?

! = 1, % = −10

Collection of counter-examples:

Solution to sparsity and non-smoothness

Agent

0 (not correct)

code

Counter-example: why am I wrong?

! = 1, % = −10

! = 1, % = −1
! = 0, % = −1
! = 0, % = −2

! = 2, % = −1
! = 2, % = −1
! = 2, % = −2
! = 3, % = −1
! = 3, % = −1
! = 3, % = −2

! = 0, % = −3
! = 0, % = −4

Pre Inv Post

Collection of counter-examples:

Solution to sparsity and non-smoothness

Agent

0 (not correct)

code

Counter-example: why am I wrong?

! = 1, % = −10

! = 1, % = −1
! = 0, % = −1
! = 0, % = −2

! = 2, % = −1
! = 2, % = −1
! = 2, % = −2
! = 3, % = −1
! = 3, % = −1
! = 3, % = −2

! = 0, % = −3
! = 0, % = −4

Pre Inv Post

Collection of counter-examples:

• Smoothed reward

Solution to sparsity and non-smoothness

Agent

0 (not correct)

code

Counter-example: why am I wrong?

! = 1, % = −10

! = 1, % = −1
! = 0, % = −1
! = 0, % = −2

! = 2, % = −1
! = 2, % = −1
! = 2, % = −2
! = 3, % = −1
! = 3, % = −1
! = 3, % = −2

! = 0, % = −3
! = 0, % = −4

Pre Inv Post

Collection of counter-examples:

• Smoothed reward
• Reduced Z3 calls

Solution to generalization

• Transferable graph representation of source code

=>

=> SSA Transformation

Code2Inv: End-to-end learning framework

......

! ≥ 0 && ! < 4 ' ≥ 100

Experimental evaluation of Code2Inv

• We collect 133 benchmark programs

OOPSLA 2013, Dillig et al

POPL 2016, Garag et al

Experimental evaluation of Code2Inv

• We collect 133 benchmark programs

OOPSLA 2013, Dillig et al

POPL 2016, Garag et al

Code2Inv as an
out-of-the-box
solver

Solved more instances
with same # Z3 calls

Ours

Generalize to new programs
void main (int n) {

int x = 0

int m = 0

while (x < n) {

if (unknown()) {
m = x

}
x = x + 1

}
if (n > 0) {

assert (m < n)
}

}

Generalize to new programs
void main (int n) {

int x = 0

int m = 0

while (x < n) {

if (unknown()) {
m = x

}
x = x + 1

}
if (n > 0) {

assert (m < n)
}

}

int w = 0

int z = 0

Generalize to new programs
void main (int n) {

int x = 0

int m = 0

while (x < n) {

if (unknown()) {
m = x

}
x = x + 1

}
if (n > 0) {

assert (m < n)
}

}

int w = 0

int z = 0

z = z + 1

w = m + x

z = m + 1

Generalize to new programs
void main (int n) {

int x = 0

int m = 0

while (x < n) {

if (unknown()) {
m = x

}
x = x + 1

}
if (n > 0) {

assert (m < n)
}

}

void main (int n) {
int x = 0
int w = 0
int m = 0
int z = 0
while (x < n) {

z = z + 1
if (unknown()) {

m = x
z = m + 1

}
x = x + 1
w = m + x

}
if (n > 0) {

assert (m < n)
}

}

int w = 0

int z = 0

z = z + 1

w = m + x

z = m + 1

Generalization ability of Code2Inv

1 confounding variable 3 confounding variables 5 confounding variables

Poster session:

Room 210 & 230 AB #23

05:00 -- 07:00 PM

