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O Solvers: gradient descent (GD), momentum methods...

O Our method improves GD by

* same convergence rate in theory
» reduced communication in theory
= more than 90% communication saving in practice
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Vanilla GD implementation
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O Per iteration communication overhead for M uploads (one per worker)




Prior art

O Communication-efficient distributed learning

» Quantized gradient descent [Kashyap et al., 07], [Alistarh et al., 17], [Suresh et al., 17]...
= Increasing computation before communication [Jaggi et al., 14], [Ma et al., 17], [Smith et al., 17]...

= Sparse SGD with large entries [Aji-Heafield 17], [Sun et al., 17], [Lin et al., 18], [Stich et al., 18]...

» number of communication rounds is not reduced

Our contribution

Adaptively skip communication, provable communication reduction




Our LAG implementation
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Q Select a subset of workers M* C M to upload

Q Remaining workers in M/M* do not upload




LAG: GD under two alternative communication rules

Q Worker-side rule (LAG-WK): Include worker m in MF* if
Old gradient
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LAG: GD under two alternative communication rules

Q Worker-side rule (LAG-WK): Include worker m in MF* if
Old gradient
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Q Server-side rule (LAG-PS): Include worker m in M*if
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= | AG-PS is a sufficient condition for LAG-WK.
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Iteration and communication complexity

(nonconvex) Local loss £,.(0) is smooth.
(convex) Loss £(6) is convex.
(strongly convex) Loss £(0) is (restricted) strongly convex.

Theorem 1 In all cases, LAG enjoys the same convergence rate as GD.

Theorem 2 If local objectives are heterogeneous, LAG requires smaller
number of uploads to a given accuracy than GD; e.g., as small as 7/M.




Linear prediction

O Real datasets distributed on M = 9 workers

Objective error
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Objective error

Logistic regression

O Real datasets distributed on M = 9 workers
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> LAG needs same number of iterations but fewer uploads
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Conclusions

O Adaptive communication rules for distributed learning

O Not degrade convergence but reduce communication

Thank You!
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