LAG: Lazily Aggregated Gradient for Communication-Efficient Distributed Learning

Tianyi Chen Georgios Giannakis Tao Sun Wotao Yin

UMN, ECE UCLA, Math

NeurIPS 2018

Overview

$$egin{aligned} & \min & \mathcal{L}(oldsymbol{ heta}) & ext{with} & \mathcal{L}(oldsymbol{ heta}) := \sum_{m \in \mathcal{M}} \mathcal{L}_m(oldsymbol{ heta}) \end{aligned}$$

Overview

$$egin{aligned} & ext{minimize} \ \mathcal{L}(oldsymbol{ heta}) & ext{with} \quad \mathcal{L}(oldsymbol{ heta}) := \sum_{m \in \mathcal{M}} \mathcal{L}_m(oldsymbol{ heta}) \end{aligned}$$

- □ Solvers: gradient descent (GD), momentum methods...
- Our method improves GD by
 - same convergence rate in theory
 - reduced communication in theory
 - more than 90% communication saving in practice

Vanilla GD implementation

□ Per iteration communication overhead for M uploads (one per worker)

Prior art

- □ Communication-efficient distributed learning
- Quantized gradient descent [Kashyap et al., 07], [Alistarh et al., 17], [Suresh et al., 17]...
- Increasing computation before communication [Jaggi et al., 14], [Ma et al., 17], [Smith et al., 17]...
- Sparse SGD with large entries [Aji-Heafield 17], [Sun et al., 17], [Lin et al., 18], [Stich et al., 18]...
 - > number of communication rounds is not reduced

Our contribution

Adaptively skip communication, provable communication reduction

Our LAG implementation

Fresh gradient

Old gradient

$$\boldsymbol{\theta}^{k+1} = \boldsymbol{\theta}^k - \alpha \sum_{m \in \mathcal{M}^k} \nabla \mathcal{L}_m(\boldsymbol{\theta}^k) - \alpha \sum_{m \in \mathcal{M}/\mathcal{M}^k} \nabla \mathcal{L}_m(\hat{\boldsymbol{\theta}}_m^{k-1})$$

- $lue{}$ Select a subset of workers $\mathcal{M}^k \subseteq \mathcal{M}$ to upload
- \square Remaining workers in $\mathcal{M}/\mathcal{M}^k$ do not upload

LAG: GD under two alternative communication rules

 \square Worker-side rule (LAG-WK): Include worker m in \mathcal{M}^k if

Old gradient

$$\left\|\nabla \mathcal{L}_m(\boldsymbol{\theta}^k) - \nabla \mathcal{L}_m(\hat{\boldsymbol{\theta}}_m^{k-1})\right\| \ge \frac{1}{M} \left\|\frac{1}{\alpha} \left(\boldsymbol{\theta}^k - \boldsymbol{\theta}^{k-1}\right)\right\|$$

Gradient innovation

Optimization progress

LAG: GD under two alternative communication rules

 \square Worker-side rule (LAG-WK): Include worker m in \mathcal{M}^k if

Old gradient

$$\left\|\nabla \mathcal{L}_m(\boldsymbol{\theta}^k) - \nabla \mathcal{L}_m(\hat{\boldsymbol{\theta}}_m^{k-1})\right\| \ge \frac{1}{M} \left\|\frac{1}{\alpha} \left(\boldsymbol{\theta}^k - \boldsymbol{\theta}^{k-1}\right)\right\|$$

Gradient innovation

Optimization progress

 \square Server-side rule (LAG-PS): Include worker m in \mathcal{M}^k if

$$L_m$$
 : smoothness of \mathcal{L}_m $L_m \Big\| oldsymbol{ heta}^k - \hat{oldsymbol{ heta}}_m^{k-1} \Big\| \geq rac{1}{M} \left\| rac{1}{lpha} \left(oldsymbol{ heta}^k - oldsymbol{ heta}^{k-1}
ight) \Big\|$

LAG-PS is a sufficient condition for LAG-WK.

Iteration and communication complexity

```
(nonconvex) Local loss \mathcal{L}_m(\theta) is smooth.
```

```
(convex) Loss \mathcal{L}(\theta) is convex.
```

(strongly convex) Loss $\mathcal{L}(\theta)$ is (restricted) strongly convex.

Theorem 1 In all cases, LAG enjoys the same convergence rate as GD.

Theorem 2 If local objectives are heterogeneous, LAG requires **smaller number of uploads** to a given accuracy than GD; e.g., as small as 1/M.

Linear prediction

□ Real datasets distributed on M = 9 workers

Cyc-/Num-IAG: cyclic/non-uniform update of incremental aggregated gradient

Logistic regression

☐ Real datasets distributed on M = 9 workers

LAG needs same number of iterations but fewer uploads

Conclusions

- □ Adaptive communication rules for distributed learning
- Not degrade convergence but reduce communication

Thank You!

Thu Dec 6th 05:00 -- 07:00 PM @ Room 210 & 230 AB #8